
Predictable Memory Bandwidth Regulation
for DynamIQ Arm Systems

Ashutosh Pradhan, Daniele Ottaviano, Yi Jiang, Haozheng Huang,
Jiajia Zhang, Alexander Zuepke, Andrea Bastoni, Marco Caccamo

Technical University of Munich
{ashutosh.pradhan, daniele.ottaviano, yi9.jiang, haozheng.huang, jiajia.zhang, alex.zuepke, andrea.bastoni, mcaccamo}@tum.de

Abstract—Modern real-time embedded systems increasingly
rely on Arm-based Multiprocessor System-on-Chip (MPSoC)
architectures to support demanding applications, such as AI
workloads and high-speed control systems. To mitigate inter-
ference among co-running applications and enforce predictable
behavior, software memory bandwidth regulation strategies based
on hardware performance counters have been proposed to
manage concurrent memory accesses among CPUs. However,
such mechanisms (e.g., MemGuard, MemPol) have been mostly
evaluated on previous generations of 64-bit Arm systems, i.e.,
Cortex-A53, A57, or A72.

Newer Arm MPSoCs, featuring clusters of Cortex-A55, A76,
and A78 cores, introduce (i) the Arm DynamIQ Shared Unit
(DSU), (ii) additional cache levels, and (iii) new memory con-
trollers optimized to manage high-bandwidth transactions from
accelerators (e.g., GPUs, TPUs). Extending software-based mem-
ory bandwidth regulation strategies to newer Arm cores is
non-trivial and requires careful characterization of the newly
introduced performance counters and the achievable worst-case
memory bandwidth (sustainable memory bandwidth).

This paper systematically investigates software-based memory
bandwidth regulation on DSU-equipped Arm MPSoCs, using the
Rockchip RK3588 and NVIDIA AGX Orin as two representative
platforms. We empirically evaluate the impact of the new memory
hierarchy on sustainable memory bandwidth and the accuracy of
performance monitoring counters. We derive updated memory
bandwidth regulation models and assess their behavior when
applied to MemGuard and MemPol. Our results show that
software-based memory bandwidth regulation strategies can be
successfully applied to newer platforms. However, the different
selection of performance counters might result in pessimistic
regulation models.

Index Terms—real-time system, multi-core, memory band-
width regulation, performance monitoring counters, Arm

I. INTRODUCTION

The increasing computational demands of modern indus-
trial applications, such as AI-based workloads and high-
speed controllers, have driven the adoption of highly complex
embedded platforms. These systems are predominantly built
upon Multiprocessor System-on-Chip (MPSoC) architectures
that integrate a diverse array of processing elements, including
multiple CPU cores and specialized accelerators (e.g., GPUs,
TPUs), connected to a complex shared memory subsystem.
While these heterogeneous platforms enable remarkable per-
formance and energy efficiency, their complexity introduces
significant challenges in system analysis, particularly for real-
time applications.

One of the most critical sources of unpredictability in
MPSoCs is contention in the shared memory subsystem.
When multiple applications execute concurrently on the same
platform, they inevitably compete for access to the memory
controller. This leads to unpredictable interference that can
degrade system determinism and violate real-time constraints.
To mitigate this issue, the real-time systems community
has explored various techniques for regulating memory ac-
cesses. Among these, software-based memory bandwidth reg-
ulation leveraging performance monitoring counters (PMCs)
has gained significant attention due to its applicability across
a wide range of commercial-off-the-shelf (COTS) MPSoCs,
which are typically equipped with performance monitoring
units (PMUs). Notable software-based approaches such as
MemGuard [1], [2] and MemPol [3], [4] have demonstrated
the feasibility of enforcing PMC-based memory bandwidth
regulation on COTS hardware with outstanding performance
and limited overhead.

However, existing software-based memory bandwidth regu-
lation mechanisms have primarily been designed and evaluated
on MPSoCs featuring earlier generations of Arm processors,
specifically Cortex-A53, A57, and A72 cores [1]–[4]. While
these architectures have been widely deployed over the past
decade, newer Arm core families, such as Cortex-A55, A76,
and A78, are now becoming the standard for next-generation
platforms. These newer cores introduce significant architec-
tural changes, including an updated set of PMCs, redesigned
memory controllers, and deeper cache hierarchies. A key
innovation is the Arm DynamIQ Shared Unit (DSU) [5], which
fundamentally changes how clusters of cores interact with
shared memory. Acting as a central interconnect, the DSU
integrates a per-cluster L3 cache, enabling more flexible core-
cluster management and impacting the design and applicability
of memory bandwidth regulation strategies.

This paper investigates the feasibility and performance
of software-based memory bandwidth regulation on modern
DSU-based MPSoCs. Specifically, we analyze, port, and eval-
uate MemGuard and MemPol on two recent Arm-based COTS
platforms, the Rockchip RK3588 [6] and the NVIDIA AGX
Orin [7]. Our study answers these key research questions:

• Analyzing how modern memory subsystems affect the
worst-case memory bandwidth (sustainable bandwidth)
compared to previous Arm-based MPSoCs, and the re-
sulting impact on bandwidth utilization.



• Investigating PMCs on new Arm cores, comparing their
behavior to earlier cores, and modeling their suitability
for real-time memory bandwidth regulation strategies.

• Proposing new memory bandwidth regulation schemes
for Cortex-A55, A76, and A78 cores.

• Evaluating the effectiveness of memory bandwidth regu-
lation on DSU-equipped MPSoCs.

In the following, Sec. II discusses previous work and the
architectural evolution of Arm MPSoCs. Sec. III presents an
empirical assessment of the sustainable memory bandwidth
of the evaluated platforms. Sec. IV analyzes the granularity
and accuracy of PMCs available in recent Arm cores and
the DSU. Sec. V explores different regulation models aligned
with existing software-based mechanisms such as MemGuard
and MemPol. Section VI details the implementation details
and parameter settings of MemGuard and MemPol for the
evaluation. Sec. VII evaluates the proposed regulation models
by applying them to MemGuard and MemPol on the selected
platforms. Conclusion are discussed in Sec. VIII.

II. BACKGROUND AND RELATED WORKS

We focus on memory bandwidth regulation techniques that
do not require hardware modifications and that can be flexibly
deployed on COTS MPSoCs. The approaches can be broadly
categorized into hardware-assisted and software-based.

A. Hardware-Assisted Memory Bandwidth Regulation

Hardware-assisted memory bandwidth regulation aims to
control system-wide memory traffic by integrating quality-of-
service (QoS) features at the interconnect and memory con-
troller levels. These mechanisms typically implement priority-
based arbitration, dynamically adjusting memory access privi-
leges for different cores and peripherals [8]. While these hard-
ware primitives have been explored for bandwidth regulation
in previous works [9]–[12], their effectiveness is often limited,
as memory traffic is tracked at the interconnect level, making
it difficult to attribute usage to individual cores.

Intel’s Resource Director Technology (RDT) [13] and
Arm’s Memory Partitioning and Monitoring (MPAM) [14]
offer configurable resource allocation policies, allowing mem-
ory access restrictions at finer levels of granularity. However,
these mechanisms remain yet sparsely adopted in commer-
cial embedded MPSoCs. Intel RDT is available in recent
SoCs and incurs minimal software overhead, but it falls
short of providing the expected level of protection for real-
time systems [15]. Meanwhile, Arm MPAM has yet to be
implemented in any commercially available SoC. Moreover, its
specification defines all control interfaces as optional, leading
to inconsistent implementations across platforms.

B. Software-Based Memory Bandwidth Regulation

Software-based memory bandwidth regulation techniques
leverage PMCs as proxies to monitor and control memory
bandwidth consumption of specific tasks or whole cores at the
operating system (OS) or hypervisor level. These approaches
do not require specialized hardware features and are applicable

to a broad range of COTS MPSoCs. Furthermore, these
approaches use per-core PMCs, allowing easier deployment
and control compared to interconnect-level regulation. The
key challenge of these techniques is balancing fine-grained
enforcement with system overhead. While short regulation
periods improve control accuracy, they also increase com-
putational overhead, particularly when enforcement relies on
frequent interrupts.

1) MemGuard: MemGuard [1], [2] is the first PMC-based
software regulation mechanism designed to enforce per-core
memory bandwidth constraints by monitoring memory traffic
and applying throttling when necessary. Following the Mem-
Guard approach, other works have been proposed over the
years [16]–[18]. MemGuard assigns a fixed memory budget
to each core, defining the maximum number of allowed mem-
ory transactions per regulation period. These transactions are
tracked through PMCs, which measure key memory activities
such as cache refills and DRAM accesses. When a core
depletes its allocated budget, the PMU immediately triggers
an interrupt and MemGuard forces the core to idle until the
next replenishment cycle begins. This mechanism effectively
reduces resource contention, ensuring that no single core
monopolizes shared resources. However, the reliance on fre-
quent interrupts introduces substantial overhead, particularly
when attempting to regulate memory traffic at fine granularity
(see Fig. 4 and [2]–[4], [19]). Moreover, MemGuard can
only regulate using the contribution of one single metric
(e.g., cache write-backs, cache refills, or memory controller
utilization) at a time. While different metrics can be observed
using different PMCs, their memory contributions cannot
be combined together [20]. This constraint often leads to
pessimistic enforcement, as the system must throttle execution
conservatively to prevent exceeding the assigned bandwidth.

2) MemPol: To address such limitations, MemPol [3],
[4] introduces a polling-based memory bandwidth regulation
mechanism that eliminates the reliance on interrupts, allows
the use of multiple performance counters, and significantly
reduces overhead on the cores under regulation. MemPol
continuously monitors memory consumption using a separate
processing element to enforce external regulation. This exter-
nal regulation logic runs on a dedicated core—e.g., a Cortex-R
or Cortex-M processor, or as IP block on an FPGA [21]—and
continuously polls PMCs without interfering with application
execution. If a core exceeds its assigned bandwidth, the regula-
tor uses the cross trigger interfaces (CTI) of the Arm CoreSight
debug infrastructure to throttle it. Unlike MemGuard, MemPol
supports multi-dimensional monitoring, simultaneously com-
bining metrics obtained from multiple PMC events to regulate
the cores, enabling a less pessimistic regulation. Instead of
completely stalling a core upon budget exhaustion, MemPol
implements an on-off throttling mechanism that dynamically
adjusts execution time using a sliding-window model or a
token-bucket model [21], smoothing out memory usage while
maintaining low-latency regulation. By shifting the monitoring
and enforcement logic outside the main application cores,
MemPol removes the high-frequency interrupt overhead and



enables microsecond-scale regulation.
3) PMCs on Arm Cortex-A53, A57, and A72 Cores:

On these cores, the memory bandwidth generated by
each core can be measured reliably by two PMU events:
0x17 l2d_cache_refill measures all cachelines coming
from the memory controller, and 0x18 l2d_cache_wb mea-
sures dirty cachelines eventually written back to memory.
Both events are suitable proxies for the memory bandwidth
generated by the individual cores.

C. Architectural Evolution of Arm MPSoCs

Recent Arm MPSoCs have shifted from traditional multi-
cluster architectures to the DynamIQ Shared Unit (DSU)-
based designs, introducing greater flexibility in core con-
figurations [22]. Earlier architectures typically followed ei-
ther homogeneous layouts, where all cores were identical,
or big.LITTLE clusters, where high-performance and power-
efficient cores were grouped separately [23]. The DSU unifies
these approaches, enabling both homogeneous and heteroge-
neous cores to coexist within a single cluster and adding
a shared L3 cache for all cores within the cluster. This
introduces a more complex memory hierarchy, affecting cache
management and software-based memory bandwidth regula-
tion techniques. This architectural shift is accompanied by a
transition to newer Arm cores, specifically Cortex-A55, A76,
and A78, which replace the Cortex-A53, A57, and A72.

The Cortex-A55 [24] is the successor of the Cortex-A53
and maintains an in-order pipeline. Each core has private L1
instruction and data caches and an optional shared L2 cache,
which functions as a victim cache. This configuration enforces
an exclusive caching policy, meaning that data is allocated in
the L2 cache only when evicted from the L1 data cache and
does not reside in both caches simultaneously.

In contrast, Cortex-A76 [25] and A78 [26] are out-of-order
cores optimized for performance, commonly paired with low-
power A55 cores in heterogeneous DSU clusters. These cores
feature inclusive L2 caches, i.e., all L1-resident data also exist
in the L2 cache. Cortex-A76AE [27] and A78AE [28] (auto-
motive enhanced) further refine this architecture by introduc-
ing lockstep mode, making them suitable for high-reliability
applications, such as safety-critical automotive systems.

The DSU acts as the interconnect for all cores in a cluster,
integrating a shared L3 cache (256 KB–4 MB, 16-way set-
associative). This marks a departure from pre-DSU MPSoCs,
where cores in each cluster shared the L2 cache. The DSU
features PMCs that provide a consistent view of the memory
transactions of all its cores (See Sec. III). However, these
PMCs aggregate cluster-wide activity rather than individual
core usage, limiting their utility for per-core memory control.

III. SUSTAINABLE MEMORY BANDWIDTH

To systematically evaluate the impact of the new DSU-
based architecture on memory bandwidth regulation, this study
stresses the memory subsystem of different cores (i.e., Cortex-
A55, A76, and A78AE) available on representative MPSoCs:
Rockchip RK3588 [6] and NVIDIA AGX Orin [7].

To characterize the memory access capabilities of each
target platform, we evaluate the sustainable memory band-
width [9], which is defined in [4] as the maximum bandwidth
that a memory controller can sustain under worst-case memory
workload. To assess the sustainable memory bandwidth, we
employ the same benchmarking tool [29] that has been previ-
ously used in [4]. The benchmark systematically measures the
bandwidth capabilities of the DRAM controller by executing a
range of memory access patterns and progressively increasing
access strides over a memory buffer to trigger worst-case
DRAM behaviors, such as frequent row misses within the
same DRAM bank [30].

The benchmark iterates over a large memory buffer with
different striding patterns, e.g., first cacheline by cacheline,
then only every second cacheline, then only every fourth
cacheline, etc., and measures the bandwidth for operations on
cachelines, denoted as read, write, and modify. Note that Arm
cores do not need to fetch a cacheline from memory when
the full content of a cacheline is overwritten. We distinguish
these “pure” write operations from modify operations that
fetch cachelines from memory due to partial writes to the
whole cacheline, e.g., if just one byte in the cacheline is
changed. We further test non-temporal loads and stores (ldnp
and stnp), prefetches (pfrm) to L1, L2, or L3, and clearing
of cachelines by the dc zva instruction (dczva). We run the
benchmarks on Linux on both platforms, ensuring that only
essential system processes remain active to minimize external
interference. All tests are performed with power management
settings configured for maximum performance. Investigation
of the effect of power management on memory regulation,
along with a comparison to older platforms such as in [31], is
left for future work.

A. Rockchip RK3588

The RK3588 SoC on the Orange Pi 5 Plus board features
a single DSU cluster combining four Cortex-A76 and four
Cortex-A55 cores, offering a relevant testbed for studying
memory interference in shared heterogeneous environments.

Our experiments use the mainline Linux kernel version
6.13.3, a buffer size of 128 MiB, mapped as huge pages, and
additionally record two DSU PMCs, 0x60 bus_access_rd

and 0x61 bus_access_wr, to validate the results.1 We con-
figure all cores to their maximum speed by setting the CPU
governor to performance. Fig. 1 shows the results for a run
on a single Cortex-A55 core resp. on a single Cortex-A76 core
on the RK3588 while all other cores are idle. The solid lines
show the achieved per-core bandwidth, while the dotted lines
represent the sum of the PMC values retrieved at the DSU level
for the whole cluster to validate the results. Compared to [3],
[4], we improved the benchmark with the --step-all option
to always access the full memory region during striding, as we
discovered that the DSU would otherwise cache the memory
accesses at higher step sizes. Note that modify operations

1We run bench -s 128 --huge -c <core> --perf-config
0x60@arm_dsu_0/4,0x61@arm_dsu_0/4 --auto --step-all
<op> on core 0 for Cortex-A55 and on core 4 for Cortex-A76.



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

64 128 256 512 1Ki 2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi 4Mi 8Mi

B
a
n
d
w

id
th

 o
v
e
r 

1
2
8
 M

iB
 b

lo
c
k
 [
M

B
/s

]

Increment in Bytes

read ldr
read ldnp

prfm L1
prfm L2
prfm L3

modify str
modify stnp

write str
write stnp

write dczva

(a) Cortex-A55

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

64 128 256 512 1Ki 2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi 4Mi 8Mi

B
a
n
d
w

id
th

 o
v
e
r 

1
2
8
 M

iB
 b

lo
c
k
 [
M

B
/s

]

Increment in Bytes

read ldr
read ldnp

prfm L1
prfm L2
prfm L3

modify str
modify stnp

write str
write stnp

write dczva

(b) Cortex-A76

Fig. 1: Memory bandwidth of RK3588. Solid (Dotted) lines show the bandwidth measured by one core (by the DSU PMU).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

64 128 256 512 1Ki 2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi 4Mi 8MiC
o
m

b
in

e
d
 b

a
n
d
w

id
th

 o
v
e
r 

1
2
8
 M

iB
 b

lo
c
k
s
/c

o
re

 [
M

B
/s

]

Increment in Bytes

read ldr
read ldnp

prfm L1
prfm L2
prfm L3

modify str
modify stnp

write str
write stnp

write dczva

Fig. 2: Combined memory bandwidth of all Cortex-A55 and
Cortex-A76 on RK3588. Solid lines show the bandwidth
measured by the cores. Dotted lines show the bandwidth
measured by the DSU PMU.

comprise both reads and writes, therefore the values reported
by the PMC are twice as high as the bandwidth observed by
the core. We will discuss this effect in detail in Sec. IV.

On both core types, we observe similar shapes, especially
for writes, but larger differences for reads. Initially at a stable
level, the bandwidth significantly drops after step size of
512 B. Step size 256 KiB shows a local minimum, after which
the values increase again, most likely due to parallelism in
the memory controller. The huge differences between min and
max bandwidths indicate that the bottleneck is most likely in
the memory controller and not at core- or interconnect-level.

On the A55, we observe that both prefetches to L3 and
writes achieve the highest possible bandwidth, as both will
be executed out-of-order w.r.t. the core’s in-order pipeline.
Instead, prefetches to L1 and L2, reads, and the read-part of
modify operations block the core and hit the minimum already
at a step size of 1 KiB. The A76 initially shows a higher write
bandwidth than the A55, but then plunges similarly. The read
bandwidth is significantly better and takes longer to converge
to the minimum, most likely due to the out-of-order pipeline
and load-store unit of the core.

For both cores, at step size 256 KiB, we can observe a
local minimum of around 900 MB/s for reading or writing. We
assume that this is the sustainable bandwidth of RK3588 on
the Orange Pi 5 Plus. However, our worst-case access patterns
that lead to this low bandwidth are not representative of a

multicore system running independent tasks. As the out-of-
order read results of the A76 show, the memory controller
can sustain a higher bandwidth for a mix of memory accesses
from different cores. To test this hypothesis, we ran instances
of the benchmark in parallel and in lockstep on all cores.
The results are shown in Fig. 2. Notably, all cores achieve
a total bandwidth of 2400 MB/s shared among the cores at
the same step size 256 KiB. We see that the limitation of a
core’s bandwidth is due to the specific step size, and not due to
interference from the other cores. However, these worst-case
memory access patterns in this experiment are still much more
pessimistic than the access patterns of real-world independent
tasks. Therefore, looking at the distribution of bandwidth, in
the rest of the paper we made the more realistic assumption
that a bandwidth of 2 GB/s can be achieved in most cases.
Note that the bandwidth assessment will likely show different
results for other boards equipped with the RK3588.

B. NVIDIA Orin

We use the NVIDIA Tegra T234 (Orin) SoC on the NVIDIA
Jetson AGX Orin Developer Kit as it was also adopted in
previous studies [3], [4]. The Orin incorporates three DSU
clusters, each consisting of four Cortex-A78AE cores, pro-
viding an opportunity to assess how DSU-based memory
bandwidth regulation scales across multiple clusters. Addition-
ally, the platform includes a 4MB L4 victim cache (NVIDIA
Orin SCF—System Cache Fabric), which is shared among the
DSUs and is designed to enhance communication between
core clusters and the GPU. For our evaluations, we use the
32GB variant of the Orin Developer Kit, the kernel version
5.10.216 (NVIDIA Jetson Linux r35.3.1), a larger buffer size
of 2 GiB, and record the related PMCs of the L4 SCF.2 We
configured the system for maximum performance by setting
nvpmodel = 0, enabling jetson_clocks to maximize all
frequencies—including the memory bus—and setting the CPU
frequency governor to performance.

Fig. 3a shows the results of our benchmark running on a
single Cortex-A78AE core at maximum speed on the Orin

2We run bench -s 2048 --huge -c 0 --perf-config
0x0600@scf_pmu,0x0610@scf_pmu --auto --step-all
<op>. The SCF PMCs are 0x0600 bus_access_rd and
0x0610 bus_access_wr.



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

64 128 256 512 1Ki 2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi 4Mi 8Mi

B
a
n
d
w

id
th

 o
v
e
r 

1
2
8
 M

iB
 b

lo
c
k
 [
M

B
/s

]

Increment in Bytes

read ldr
read ldnp

prfm L1
prfm L2
prfm L3

modify str
modify stnp

write str
write stnp

write dczva

(a) Single Cortex-A78AE

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

64 128 256 512 1Ki 2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi 4Mi 8MiC
o
m

b
in

e
d
 b

a
n
d
w

id
th

 o
v
e
r 

1
2
8
 M

iB
 b

lo
c
k
s
/c

o
re

 [
M

B
/s

]

Increment in Bytes

read ldr
read ldnp

prfm L1
prfm L2
prfm L3

modify str
modify stnp

write str
write stnp

write dczva

(b) Combined 12 Cortex-A78AE

Fig. 3: Single core and combined memory bandwidth of Cortex-A78AE on Orin. Solid lines show the bandwidth measured
by one core. Dotted lines show the bandwidth measured by the SCF (L4 cache) PMU.

SoC. We see similar trends as the RK3588 but very different
effects. The Orin constantly provides high levels of bandwidth
regardless of the step size. We can observe two dips: a sharp
one at step size 128 B where the bandwidth halves, which
hints at an interleaving of two memory controllers, and another
slight dip from 32 KiB to 128 KiB, where reads converge from
around 6 GB/s to a minimum of 4 GB/s. Writes stay at around
15 GB/s after the first dip.

The Orin documentation reports a theoretical peak memory
bandwidth of 204.8 GB/s. Therefore, one core alone cannot
max out the memory controller. We, therefore, conduct another
experiment where we run the benchmark in parallel and in
lockstep on all 12 cores of the Orin. Fig. 3b shows the
combined bandwidth shared among all cores. The achievable
memory bandwidth shows the same trend and dips. We now
observe a minimum of 12 to 13 GB/s for reads and 45 GB/s
for writes. The constantly high write bandwidth hints at a
large buffer or cache in the memory controller. Note that the
combined peak write bandwidth of 90 GB/s is still limited
by a bottleneck towards the cores. In fact, we were able to
achieve even higher bandwidth, up to 150 GB/s, using memory
bandwidth-bound STREAM kernels [32] on the GPU. Note
that we cannot fully explain the measurements of the SCF
PMCs for reads and modify at high step sizes, but it is likely
that the effects correlate with caching in L3 and L4, as we did
not run the benchmark with the --step-all flag enabled.
Based on these results, we assume a sustainable bandwidth of
12 GB/s for reads and 45 GB/s for writes for the rest of this
work.

IV. PERFORMANCE MONITORING COUNTER ANALYSIS

The type and accuracy of PMCs vary across hardware
architectures [33]. We identify the most suitable counters to
use for memory bandwidth regulation on DSU-based platforms
by analyzing the PMCs available on Cortex-A55, A76, and
A78AE cores, as well as the DSU. The documentation of
Cortex-A76 and A76AE (Cortex-A78 and A78AE resp.) does
not show differences in PMCs and CPU-errata between cores
of the same family. We assume therefore that our results also
apply to Cortex-A76AE and A78 cores. We evaluate PMCs’

accuracy by comparing counter readings against the exact
number of memory accesses imposed by controlled workloads.

A. Counter Selection Criteria

Arm processors expose hundreds of PMC event types per
core and around forty for the DSU. These counters differ in
measurement units: some track events based on cycles (e.g.,
bus cycles, CPU cycles), while others count memory accesses
or transactions. We focus on memory and cache-related events
relevant to memory bandwidth regulation, prioritizing those
that count memory accesses. Many PMCs count cacheline as
a whole—e.g., moving cachelines in the memory hierarchy—
while others count each access to a cacheline, e.g., individual
loads and stores to a cacheline in the L1 cache. We term
data-access counters the PMCs that count individual memory
accesses, and cacheline counters those that track cacheline-
level transactions.

For memory bandwidth regulation, cacheline counters are
to be preferred because they consistently measure memory
and cache transactions with a fixed granularity of 64 bytes.
Related are the counters that count memory transactions on
the bus. As most memory transactions are to cached memory,
and cachelines are typically broken down into a fixed number
of transactions, e.g., four transactions of 128 bit widths, these
counters are also suitable for accounting. In contrast, data-
access counters vary in granularity (e.g., 8-bit or 64-bit),
making them less reliable for enforcing bandwidth constraints.
We focused therefore on cacheline counters and we identified
such counters among those available on Cortex-A55, A76,
A78AE, and in the Arm architecture.

B. PMC Evaluation

We use our benchmarking tool [29] to measure the correla-
tion of cacheline counters with actual memory transactions.
We run read, write, and modify operations on a buffer of
64 MiB size. On the RK3588 platform, we run the benchmarks
on four out of eight cores (2×A55 and 2×A76) and on
the Orin, we run it on two cores on a single DSU cluster
(2×A78AE). Running workloads on only a subset of cores
allows us to verify that the DSU counters do not record activity
from unrelated cores. On the Orin, we limit execution to a



event id event name read read ldnp prefetch l1 prefetch l2 prefetch l3 modify modify prefetch modify stnp write write stnp write dczva
A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78

0x0004 l1d cache 1 1 1 2 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 4 4 1 4 4 0 1 1
0x0040 l1d cache rd 1 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x0041 l1d cache wr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 4 4 1 4 4 0 1 1
0x0020 l1d ws mode 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - ▷◁ - - 0 - - ▷◁ - -
0x0003 l1d cache refill - 1 1 - 7/8 1 - 0 0 - 0 0 - 0 0 - 1 1 - 3/4 3/8 - 1 1 - 0 0 - 0 0 - 0 0
0x0039 l1d cache lmiss rd - - 1 - - 1 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0
0x0042 l1d cache refill rd - 1 1 - 7/8 1 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0
0x0043 l1d cache refill wr - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 1 1 - 3/4 3/8 - 1 1 - 0 0 - 0 0 - 0 0
0x00c2 l1d cache refill prefetch 1 - - 1 - - 0 - - 0 - - 0 - - 1 - - 0 - - 0 - - 0 - - 0 - - 0 - -
0x001f l1d cache allocate - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0x0015 l1d cache wb 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0x0047 l1d cache wb clean - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0
0x0046 l1d cache wb victim - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 1 1 - 1 1 - 1 1 - 0 0 - 0 0 - 0 0
0x0016 l2d cache 2 2 2 2 2 2 2 0 ▷◁ 1 0 0 0 0 0 2 2 2 2 2 2 1 2 2 1 1 1 1 1 1 1 1 1
0x0050 l2d cache rd 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0x0051 l2d cache wr 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0x0017 l2d cache refill 1 3/8 1/2 1 1/2 1/2 1 0 0 0 0 0 0 0 0 1 0 0 1 ▷◁ ▷◁ 1 0 0 0 0 0 0 0 0 0 0 0
0x4009 l2d cache lmiss rd - - 1/2 - - 1/2 - - 0 - - 0 - - 0 - - 0 - - ▷◁ - - 0 - - 0 - - 0 - - 0
0x0052 l2d cache refill rd 1 3/8 1/2 1 1/2 1/2 1 0 0 0 0 0 0 0 0 1 0 0 1 1/4 ▷◁ 0 0 0 0 0 0 0 0 0 0 0 0
0x0020 l2d cache allocate 1 - - 1 - - 1 - - 0 - - 0 - - 1 - - 1 - - 0 - - 0 - - 1 - - 0 - -
0x0018 l2d cache wb 1 1 1/8 1 1/2 0 1 ▷◁ 0 1 1/8 ▷◁ 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0
0x0057 l2d cache wb clean - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0
0x0056 l2d cache wb victim - 1 1/8 - 1/2 0 - ▷◁ 0 - 1/8 ▷◁ - 0 0 - 1 1 - 1 1 - 1 1 - 0 0 - 0 0 - 0 0
0x002b l3d cache 2 2 9/8 2 3/2 1 2 1/4 1/8 2 1/4 ▷◁ 0 1/8 1/8 2 2 2 2 2 2 2 1 1 1 0 0 1 0 0 1 0 0
0x00a0 l3d cache rd 1 1 1 1 1 1 1 ▷◁ ▷◁ 1 ▷◁ ▷◁ 0 ▷◁ 1/8 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0x0036 ll cache rd 1 1 1 1 1 1 1 ▷◁ ▷◁ 1 1/8 ▷◁ 0 1/8 1/8 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0x002a l3d cache refill 3/4 1 1 7/8 1 1 1 1/8 ▷◁ 1 1/8 ▷◁ 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0x0037 ll cache miss rd 3/4 1 1 7/8 1 1 1 1/8 ▷◁ 1 1/8 ▷◁ 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0x400b l3d cache lmiss rd - - 1 - - 1 - - ▷◁ - - ▷◁ - - 0 - - 1 - - 1 - - 1 - - 0 - - 0 - - 0
0x00a2 l3d cache refill rd 7/8 - - 7/8 - - 1 - - 1 - - 0 - - 1 - - 1 - - 1 - - 0 - - 0 - - 0 - -
0x00c0 l3d cache refill prefetch 1 - - 5/8 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
0x0029 l3d cache allocate 1 1 1/8 1 1/2 0 1 ▷◁ 0 1 1/8 ▷◁ 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0
0x002c l3d cache wb - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0x0013 mem access 1 1 1 2 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 1 1
0x0066 mem access rd 1 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x0067 mem access wr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 1 1
0x0019 bus access 8 8 9/2 8 47/8 33/8 8 3/4 3/8 8 1 3/4 0 0 0 8 8 8 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4
0x0060 bus access rd 4 4 4 4 4 4 4 1/2 1/4 4 1/2 3/8 0 0 0 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0
0x0061 bus access wr 4 4 1/2 4 15/8 ▷◁ 4 3/8 1/8 4 1/2 3/8 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

TABLE I: Per-core PMC evaluation results. Each counter’s measured memory transactions are reported as fractions of 64 MiB
with an 8 MiB granularity. Counters with values deviating by more than ±15% from the expected fraction are marked as ’▷◁’
(unreliable). Counters unavailable on a specific core are marked as ’-’.

event id event name read read ldnp prefetch l1 prefetch l2 prefetch l3 modify modify prefetch modify stnp write write stnp write dczva
A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78 A55 A76 A78

0x002b l3d cache 2 2 5/4 2 3/2 ▷◁ 2 ▷◁ 0 2 ▷◁ 0 0 0 0 2 2 1 2 2 5/8 2 2 7/8 1 1 0 1 1 0 1 1 0
0x00a0 l3d cache rd 1 1 1/4 1 1 ▷◁ 1 ▷◁ 0 1 ▷◁ 0 0 0 0 1 1 1/2 1 1 3/8 1 1 1/2 0 0 0 0 0 0 0 0 0
0x00a1 l3d cache wr 1 1 0 1 1/2 0 1 ▷◁ 0 1 ▷◁ 0 0 0 0 1 1 1/2 1 1 3/8 1 1 1/2 1 1 0 1 1 0 1 1 0
0x002a l3d cache refill 7/8 1 1 7/8 1 ▷◁ 1 ▷◁ 0 1 ▷◁ 0 0 0 0 0 1 1/2 0 3/4 ▷◁ 0 1 1/2 0 0 0 0 0 0 0 0 0
0x00a2 l3d cache refill rd 7/8 1 1/4 7/8 1 ▷◁ 1 ▷◁ 0 1 ▷◁ 0 0 0 0 0 1 1/2 0 3/4 3/8 0 1 1/2 0 0 0 0 0 0 0 0 0
0x00a3 l3d cache refill wr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x0029 l3d cache allocate 1 1 1/4 1 1/2 0 1 ▷◁ 0 1 ▷◁ 0 0 0 0 1 1 1/2 1 1 ▷◁ 1 1 1/2 1 1 0 1 1 0 1 1 0
0x002c l3d cache wb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1/2 1 1 3/8 1 1 1/2 1 1 0 1 1 0 1 1 0
0x0019 bus access 4 4 39/8 4 4 3/4 33/8 ▷◁ 0 33/8 3/8 0 4 3/8 0 8 63/8 4 8 63/8 19/8 8 63/8 29/8 4 31/8 0 4 31/8 0 31/8 31/8 0
0x0064 bus access normal 4 4 9/8 4 4 3/4 33/8 1/4 0 4 3/8 0 4 3/8 0 65/8 8 35/8 65/8 8 11/4 8 8 31/8 31/8 31/8 0 4 4 0 4 31/8 0
0x0060 bus access rd 4 4 7/8 4 4 3/4 4 1/4 0 4 3/8 0 4 3/8 0 33/8 4 17/8 33/8 4 11/8 4 4 2 0 0 0 0 0 0 0 0 0
0x0061 bus access wr 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 4 4 17/8 4 4 11/8 4 4 2 31/8 31/8 0 4 4 0 4 31/8 0

TABLE II: DSU PMC evaluation results. Each counter’s measured memory transactions are reported as fractions of 128 MiB
with a 16 MiB granularity. Benchmarks are executed on homogeneous core pairs. Unreliable counters (deviation of ±15%) are
marked as ’▷◁’, while unavailable counters are marked as ’-’.

single DSU cluster to prevent interference from the Nvidia
SCF cache shared between CPU clusters and GPU. Since the
hardware limits capturing six counters per run, a complete
experiment covering all counters requires multiple executions.

Table I shows the results for per-core counters. To improve
readability, we convert counter values into accessed megabytes
and compare them against the expected benchmark-defined
access size (64 MiB). The results are categorized as follows:

• Reliable: Counter that measure within ±15% a fraction of
64 MiB with a granularity of 8 MiB. (Reported as N/8.)

• Unreliable: Counter whose deviation exceeds 15%. Indi-
cated with ”▷◁”. It does not provide a reliable estimate
for bandwidth regulation.

• Unavailable: Counter that is unavailable on a specific
core. (Reported as ”-”.)

The 15% threshold was selected empirically: lower values
caused unstable classifications due to counter fluctuation,
while results stabilized beyond this point. We still consider
many prefetching counters as unreliable, especially on Cortex-
A76 and A78, where the access size inferred from performance
counters does not match the actual memory footprint. The
same issue was also observed and discussed in [34] (Obs. 10).
In contrast, Cortex-A55 cores tend to report software prefetch
activity more accurately.

The table reflects the flow of memory operations through

the cache hierarchy. Counters are grouped by cache level (L1,
L2, L3, and system bus), with operations within each level
ordered based on their functional role:

• Access Counters: Track generic accesses to the cache
level without necessarily changing it.

• Refill Counters: Measure cacheline refills from lower
levels of the hierarchy.

• Allocate Counters: Track cache allocations, marking data
movement into a specific cache level from higher levels.

• Write-Back Counters: Measure cachelines evicted from
the cache and written back to lower levels.

We also evaluated the correlation of DSU counters—which
aggregate memory transactions across all cores. Since DSU
counters do not distinguish per-core activity, benchmarks are
executed on homogeneous core pairs (e.g., two A55) accessing
distinct 64 MiB memory regions (128 MiB per test). Table II
presents the results for DSU counters, where the reference
access size is 128 MiB, and the granularity fraction is 16 MiB.

The results of the PMC analysis help identify which coun-
ters reliably estimate memory transactions. Specifically, we
select candidates for memory bandwidth regulation based
on two rules that match the behavior of prior Arm core
generations (Sec. II): (i) all refills from memory are accounted
as reads, and (ii) write-backs of dirty cachelines to memory
are accounted as writes. However, we have to compensate for



the effects that not all cache refills are accounted correctly, and
that we cannot observe if cachelines are dirty when they are
written back to the L3 cache, as the l3d_cache_wb counter
is not implemented on the analyzed Arm cores.

V. REGULATION STRATEGIES

We establish memory bandwidth regulation models for
DSU-based platforms featuring Cortex-A55, A76, and A78AE
cores (as well as A76AE and A78, see Sec. IV).

Effective memory bandwidth regulation requires accurately
assessing the impact of all memory operations: read, write,
and modify. However, no single per-core counter can capture
this information comprehensively and important counters that
measure write-backs from the L3 cache are not implemented
on the analyzed Arm cores. Consequently, MemGuard-based
mechanisms, which regulate using single metrics, must either
adopt conservative estimates or perform profiling-based sta-
tistical corrections [9] to prevent cores from exceeding their
allocated bandwidth. Instead, although MemPol-based regula-
tions can simultaneously combine multiple metrics, selecting
the optimal set of counters is needed to minimize estimation
errors. Additionally, under MemPol, using a large number of
PMCs impacts the polling period, affecting the selection of
the regulation strategy.

We first define a pessimistic model using a single counter,
ensuring robustness and compatibility with both MemGuard
and MemPol. Then, we refine the model using additional
counters for improved accuracy in MemPol-based regulation.

Cortex-A55: On A55, a pessimistic model assumes that
every allocated cacheline interacts two times with memory,
which is true in the case of modify operations, but doubles
the estimated bandwidth usage for read and write operations:

Bpessimistic
A55 = 2 × l3d cache allocate (1)

This model ensures worst-case isolation but overestimates read
and write traffic by 100%. Alternatively, we can use the bus
access counters that monitor the traffic between a core and
the DSU. This can perform well in scenarios where the data
expelled from the per-core caches to the DSU are not reused
and not loaded back to the per-core caches:

Bmoderate 1
A55 =

1

4
× bus access (2)

This model accurately regulates modifies and writes but
overestimates reads by 100%. Another option to remove the
overestimation of writes and partly of reads is to consider
the L3 cache refills, which better reflect the actual memory
transactions for read operations (see Table I):

Bmoderate 2
A55 = l3d cache allocate + l3d cache refill (3)

This model accurately regulates modifies and writes but over-
estimates reads by 50%.

Cortex-A76: On this platform, no per-core counter cap-
tures the write operations, but based on the observation
in Table I, we experimentally verified that l2d_cache_wr

counter counts the number of cachelines instead of cache data
accesses. Therefore:

Bpessimistic
A76 = 2 × l2d cache wr (4)

This model accurately regulates modifies but overestimates
reads and writes by 100%. We can refine the memory
budget estimation of the pessimistic model by combining
the l2d_cache_wr counter, which can detect any reads,
writes, and modifies for a cacheline by once, with the
l3d_cache_refill counter, which counts only reads and
modifies for a cacheline by once:

Bmoderate 1
A76 = l2d cache wr + l3d cache refill (5)

This model accurately regulates modifies and writes but
overestimates reads by 100%. However, our results show
that the l3d_cache_allocate counter captures 1/2 LDNP
cachelines, while the l3d_cache_refill counter detects
every LDNP cacheline. Therefore, a model using the
l3d_cache_allocate counter corrects LDNP deviations:

Bmoderate 2
A76 = l2d cache wr + l3d cache allocate (6)

This model accurately regulates modifies and writes but over-
estimates reads by less than 100%.

Cortex-A78AE: The regulation strategy aligns closely
with A76. For the pessimistic model, we use a similar strat-
egy:3

Bpessimistic
A78 = 2 × l2d cache wr (7)

Just as in A76, this model accurately regulates modifies
but overestimates reads and writes by 100%. To improve
on the previous model, we can combine l2d_cache_wr

with l3d_cache_refill, effectively calculating reads and
modifies twice but writes only once:

Bmoderate 1
A78 = l2d cache wr + l3d cache refill (8)

This model accurately regulates modifies and writes but
overestimates reads by 100%. We can also combine
bus_access_wr with l3d_cache_refill, the counters ac-
counting for writes and reads respectively. This is slightly less
pessimistic on reads than the previous model:

Bmoderate 2
A78 =

1

4
× bus access wr + l3d cache refill (9)

This model accurately regulates modifies and writes but over-
estimate reads by a small error.

3For the A78 family [26], [28], counters l2d_cache_rd and
l2d_cache_wr have been renamed to cache_access_rd and
cache_access_wr. We use the former names for consistency.



VI. IMPLEMENTATION

Deploying MemGuard and MemPol required significant
modifications to support the target platforms. Full implemen-
tation details can be found in [35].

MemGuard Implementation: On the Orin, we extended
the implementation of MemGuard provided by the Minerva
fork of Jailhouse [36]. Specifically, we re-implemented the
regulator to accommodate platform-specific hardware details,
such as the GIC-600AE and the different PMUs and Timers.
The work was upstreamed [36].

The primary constraint for MemGuard is the frequency of
interrupts. A shorter regulation period results in more frequent
interrupts, increasing system overhead. Similarly to [1]–[4],
we evaluated the overhead of MemGuard on our platforms to
select suitable regulation periods. We conducted an experiment
where a pinned core on Linux runs a modify benchmark
from [29]. The workload iterates over a 128 MiB working
set, and we measured the slowdown as a function of the
replenishment period. Each core follows the budget defined
by the regulation models (1), (4), and (7).

Fig. 4 illustrates the impact on each core type while showing
the effects of the timer and regulation (PMU) interrupt. The
results indicate that at a regulation period of 10µs, the max-
imum observed slowdown is 1.03 for Cortex-A55 and 1.11
on Cortex-A76 cores, while there is practically no overhead
for Cortex-A78AE. Reducing the period to 5µs results in a
slowdown of 1.06 on the A55, 1.24 on the A76, and 1.31
on the A78AE. The differences to Cortex-A53 [4] could be
attributed to the regulator implementation and the transition
from GICv2 (ZCU102) to GICv3 (RK3588, Orin), which may
affect interrupt latency. The overhead for shorter periods is
significantly lower compared to the ZCU102 [4]. However,
our experiments showed that for periods shorter than 100 µs,
MemGuard failed to regulate memory bandwidth effectively,
while at 1 ms, regulation remained functional. The cause
remains unclear, but one hypothesis is that PMU interrupts
are triggered but not handled correctly in our test cases. A
thorough investigation of this behavior is left as future work.

MemPol Implementation: Unlike previous platforms, we
did not use the small cores on the RK3588 and the Orin
for MemPol, as the documentation for the integrated small
cores is not publicly available on the RK3588,4 and the small
cores in the Orin SoC are all in use or not user-programmable
with the default firmware.5 Therefore, we ported the MemPol
regulator [37] to run as a bare-metal VM on top of Jail-
house on the A55 resp. A78AE. The current implementation,
available at [35], dedicates an entire application-level core
to the regulator, but future implementations could enable
MemPol to run on the small cores of the systems. Note that,
running MemPol on an application core instead of a small core
introduces the risk of interference in I/O-intensive scenarios

4The RK3588 data sheets mention three Cortex-M0 cores.
5The Orin has dedicated Cortex-R5 cores for power management, camera

management, display management, and sensor processing; Cortex-R52 cores
in an automotive safety island; and Cortex-A9 cores for audio processing.

100 101 102 103

Timer Interrupt Interval (us)

1.0

1.5

2.0

2.5

3.0

3.5

Re
la

tiv
e 

Sl
ow

do
wn

A55: Slowdown due to timer interrupt + pmu interrupt
A55: Slowdown due to timer
A76: Slowdown due to timer interrupt + pmu interrupt
A76: Slowdown due to timer
A78: Slowdown due to timer interrupt + pmu interrupt
A78: Slowdown due to timer

Fig. 4: Overhead of MemGuard on A55 and A76 cores on
RK3588, on A78 cores on Orin. The slowdown is calculated
on a modify workload running in a tight loop over 128 MiB.

where all the remaining application cores concurrently perform
I/O operations, potentially delaying the regulator’s execution.
However, in all our experiments, I/O activity on the applica-
tion cores was minimal, ensuring that the observed behavior
remains representative of a setup where MemPol is offloaded
to a small core.

For MemPol, the primary tuning parameter is the polling
period. To define an appropriate value, we stress the systems,
measure the time required for regulation actions, and include a
safety margin to ensure timely enforcement. According to the
MemPol model [3], [4], in each polling cycle, the regulator
reads PMCs from each core, processes the regulation logic,
and issues two CoreSight CTI transactions per core to enforce
execution throttling when necessary. Since these operations
involve accessing CoreSight registers, their timing depends on
platform characteristics such as bus speed and core frequency.

On the RK3588 platform, memory bandwidth regulation
applies to eight cores. Since the regulator runs from the
private caches of the core, we assigned the regulating core
an infinite bandwidth. Given that the regulation models use
two PMCs, each polling period involves two read accesses for
PMC counters and two write accesses to the CTI per core.
The measured overhead for each CoreSight access is 0.383µs
for reads and 0.285µs for writes, leading to a polling period
of 8.016µs. We use 10µs.

On the Orin, regulation extends to 12 cores, while the num-
ber of accesses per core remains unchanged. The measured
overhead for each CoreSight access is 0.697µs for reads and
0.392µs for writes. We use a 50µs polling period.

Due to the differences in sustainable read and write band-
width on the Orin, we can refine the models of the A78. We
observed in Sec. III that the Orin can sustain a 3× higher
write bandwidth than the read bandwidth. As Bmoderate 1

A78 and
Bmoderate 2

A78 comprise explicit read and write counters, we can
apply a factor of 1/3 to the write counter to account for the
relaxed write bandwidth, similar to the αr and αw factors in
the original MemPol [4]. We therefore improve Bmoderate 1

A78 to:

Bmoderate 1
Orin =

1

3
× l2d cache wr + l3d cache refill (10)



(1) A55_pessimistic (2) A55_moderate_1 (3) A55_moderate_20

20

40

60

80

100
Ba

nd
wi

dt
h 

(M
B/

s)
Target (100 MB/s)
read (MemPol)
modify (MemPol)
write (MemPol)
read (MemGuard)
modify (MemGuard)
write (MemGuard)

(a) A55

(4) A76_pessimistic (5) A76_moderate_1 (6) A76_moderate_20

20

40

60

80

100

Ba
nd

wi
dt

h 
(M

B/
s)

Target (100 MB/s)
read (MemPol)
modify (MemPol)
write (MemPol)
read (MemGuard)
modify (MemGuard)
write (MemGuard)

(b) A76

(7) A78_pessimistic (8) A78_moderate_1 (9) A78_moderate_2 (10) Orin_moderate_1 (11) Orin_moderate_20

50

100

150

200

250

300

Ba
nd

wi
dt

h 
(M

B/
s)

Target (100 MB/s)
read (MemPol)
modify (MemPol)
write (MemPol)
read (MemGuard)
modify (MemGuard)
write (MemGuard)

(c) A78AE

Fig. 5: Bandwidth under regulation by both MemGuard and MemPol for synthetic benchmark running read, write, and modify
for different regulation models on A55, A76, and A78AE. Regulations (1), (2), (4), and (7) use a single PMC and are evaluated
with MemGuard and MemPol. Regulations (3), (5), (6), (8), (9), (10), and (11) use two PMCs and are evaluated with MemPol
only. The core is regulated at a target bandwidth of 100 MB/s. Note: A78AE has 3× sustainable bandwidth for write by using
the Orin-specific models (10) and (11) which account for the higher+ sustainable write bandwidth.

And we apply a similar change to Bmoderate 2
A78 as well:

Bmoderate 2
Orin =

1

12
× bus access wr + l3d cache refill (11)

Both models have the same behavior for reads as the related
A78 models, but penalize writes less.

For MemPol on the Orin, we deliberately use the older
Jetson Linux version 35.3.1 firmware, as this firmware version
has the memory-mapped access CoreSight registers enabled by
default. Earlier and later firmware versions disable access to
CoreSight registers for security reasons, see e.g., [38].

Lastly, we use the Arm MDCR_EL2 register to partition the
six available PMCs on each core between OS and hypervi-
sor. Specifically, we assigned four PMCs to Linux and two
regulation-PMCs to the hypervisor. This allows Linux to use
a safe subset of the PMCs for e.g., perf without interfering
with the memory bandwidth regulation.

VII. EXPERIMENTAL EVALUATION

We evaluate the regulation models proposed in Sec. V and
the effectiveness of the MemGuard and MemPol implementa-
tions discussed in Sec. VI, focusing on their ability to regulate
memory bandwidth and provide performance isolation.

A. Single Core Regulation

We first verify the correct behavior of the different regula-
tion models (Sec. V), evaluating that cores do not exceed their
allocated budget. The tested core executes the benchmark tool
(Sec. III), while all other cores remain idle. The benchmark
tool runs read, write, and modify workloads in a tight loop
over an access size of 128 MiB. We assign a bandwidth of
100 MB/s well below the maximum sustainable bandwidths
(Sec. III) to the tested core, and we repeat the experiment on
each type of core (Cortex-A55, A76, and A78AE) with each
applicable regulation model on MemGuard and MemPol.

The results in Fig. 5 demonstrate that the allocated budget
is never exceeded, confirming that both MemGuard and Mem-
Pol successfully enforce bandwidth constraints. We evaluated
models using a single PMC with both MemPol and Mem-
Guard. (Fig. 5 shows the results of MemGuard that are similar

to those of MemPol.) Models using two PMCs were evaluated
with MemPol only. As expected, the models yield different
conservative levels of bandwidth enforcement. When using
the pessimistic models (1), (4), and (7), the actual memory
bandwidth usage remains well below the allocated budget, as
only modifies are accounted precisely,6 and reads and writes
are overcounted. Conversely, for the moderate models (2),
(3), (5), (6), (8) resp. (10), and (9) resp. (11)—of which
only the first is available to MemGuard—estimated and actual
bandwidths are more closely aligned. These models effectively
only overcount reads. Figs. 5a and 5b show that the moderate
models produce similar results on A55 and A76. However,
Fig. 5c shows improvements for reads on A78AE. Fig. 5c
also shows how the benefit of the Orin-specific models (10)
and (11) over the standard models (8) and (9), which cannot
leverage the higher sustainable write bandwidth on the Orin.

B. Application Sensitivity to Memory Bandwidth Regulation

To assess the impact of memory bandwidth regulation on
real-world applications, we observe the execution time of
disparity, tracking, and mser benchmarks from the San Diego
Vision Benchmark Suite (SD-VBS) [39], [40]. We run the
benchmarks on images in VGA resolution on a single core and
under bandwidth regulation with a variable bandwidth from
100 MB/s to 3000 MB/s in increments of 200 MB/s using all
regulation models on the three core types.

Due to space constraints, Fig. 6 only shows the results
for one exemplary benchmark, mser/vga.7 The shorter the
execution time, the less pessimistic is the model. For all three
cores, we can observe that bandwidths below 500 MB/s lead to
high slowdowns. Bandwidth levels below 1000 MB/s (for A55)
and 2000 MB/s (for A76 and A78AE) lead to slowdowns of at
least factor two. A system integrator must therefore carefully
select bandwidth levels and decide the trade-offs of slowdown

6Recall from Sec. III that modify operations comprise both reads and writes.
The shown bandwidth of 50 MB/s for modify comprises effectively 50 MB/s
reads and 50 MB/s writes, maxing out the target bandwidth of 100 MB/s.

7All results will be published as technical report.



0 500 1000 1500 2000 2500 3000

Bandwidth Regulation (MB/s)
0

1

2

3

4

5

6

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

(1) A55_pessimistic
(2) A55_moderate_1
(3) A55_moderate_2
No Regulation

(a) A55

0 500 1000 1500 2000 2500 3000

Bandwidth Regulation (MB/s)
0

1

2

3

4

5

6

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

(4) A76_pessimistic
(5) A76_moderate_1
(6) A76_moderate_2
No Regulation

(b) A76

0 500 1000 1500 2000 2500 3000

Bandwidth Regulation (MB/s)
0

1

2

3

4

5

6

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

(7) A78_pessimistic
(8) A78_moderate_1
(9) A78_moderate_2
(10) Orin_moderate_1
(11) Orin_moderate_2
No Regulation

(c) A78AE

Fig. 6: Execution time (s) when varying the regulation bandwidth under different regulation models on A55, A76, A78AE
running mser/vga from the SD-VBS. The dashed horizontal line shows the execution time without regulation.

Without Interference (Ref)
With Interference (Ref)
pessimistic model - Without Interference
pessimistic model - With Interference

moderate_1 model - Without Interference
moderate_1 model - With Interference
moderate_2 model - Without Interference
moderate_2 model - With Interference

Orin moderate_1 model - Without Interference
Orin moderate_1 model - With Interference
Orin moderate_2 model - Without Interference
Orin moderate_2 model - With Interference

No Regulation 50% Sus. BW 75% Sus. BW0.0

0.5

1.0

1.5

2.0

2.5

Sl
ow

do
wn

 R
at

io

1.00

1.36

2.82 2.82
2.59 2.57

1.90 1.89
1.98 1.99

1.81 1.81

1.42 1.42

(a) A55 disparity/vga

No Regulation 50% Sus. BW 75% Sus. BW0

5

10

15

20

25

30

35

Sl
ow

do
wn

 R
at

io

1.00
2.76

36.46 35.98

20.88
22.38 21.95 21.81

24.24 23.87

13.89 14.50 14.57 14.47

(b) A76 disparity/vga

No Regulation 50% Sus. BW 75% Sus. BW0

1

2

3

4

5

6

7

Sl
ow

do
wn

 R
at

io

1.00

1.79

6.856.78

4.024.20

1.921.921.771.86

1.241.39

4.574.57

2.682.75

1.391.401.201.24
1.011.08

(c) A78AE disparity/vga

No Regulation 50% Sus. BW 75% Sus. BW0.0

0.5

1.0

1.5

2.0

2.5

Sl
ow

do
wn

 R
at

io

1.00

2.84

2.23 2.24 2.15 2.16

1.62 1.68 1.64 1.65 1.60 1.60

1.26 1.29

(d) A55 mser/vga

No Regulation 50% Sus. BW 75% Sus. BW0

1

2

3

4

5

6

7

Sl
ow

do
wn

 R
at

io

1.00

2.29

6.90 6.89

4.77 4.99

7.27 7.27

4.62 4.62

3.24 3.31

4.85 4.85

(e) A76 mser/vga

No Regulation 50% Sus. BW 75% Sus. BW0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sl
ow

do
wn

 R
at

io

1.00

1.41
1.35

1.41

1.20
1.29

1.471.45

1.01

1.15
1.05

1.16
1.081.12

1.01
1.07

1.151.17

1.01
1.09

1.01
1.08

(f) A78AE mser/vga

Fig. 7: Execution time slowdown w.r.t. no-regulation/no-interference under different regulation models for SD-VBS targets. The
target core is regulated at b percent of the sustainable bandwidth, the other cores split evenly 100%− b remaining bandwidth.

vs. isolation. On all cores, the Bmoderate 1 models (2), (5), (8),
and (10) yield the fastest execution.8

C. Isolation Performance

Memory bandwidth regulation should protect target ap-
plications from memory interference caused by concurrently
executing workloads. We evaluate the isolation effectiveness
of the different regulation models using benchmarks from
SD-VBS [39], [40] as target, while the remaining cores gen-
erate modify memory interference from the benchmarking
tool [29]. The interfering workload continuously accesses an
8 MiB working set, exerting sustained pressure on the memory
system. We verified that the 8 MiB working set size generates
sufficient interference. In the test scenarios, the sustainable
memory bandwidth is distributed among all cores. The target
core receives a fixed percentage b of the bandwidth, while the

8An issue in our experimental setup was causing a glitch for 100 MB/s
regulation on A78AE, resulting in an unexpectedly faster execution time. The
current version of the setup—also committed on GitHub—reflects our new
setup that corrects the issue.

remaining bandwidth 100% − b is evenly distributed among
the interfering cores.

Fig. 7 shows examples of the isolation capability of Mem-
Guard and MemPol under the different regulation models for
disparity and mser target workloads. The figure reports the
execution time slowdown ratio w.r.t. the no-regulation, no-
interference case. Like before, the (single counter) pessimistic
models and Bmoderate 1

A55 are evaluated under MemGuard, while
other moderate ones use MemPol. In all insets, the difference
between the cases with and without interference is very limited
under regulation, while is very pronounced when the system
is not regulated. This is expected and indicates that regulation
(independently from the model) is effective in guaranteeing
the isolation of the target workloads.

Instead, slowdowns vary considerably depending on the core
and benchmark type. Here, disparity is memory intensive, and
its slowdown heavily depends on the assigned target bandwidth
and on the model. Insets 7b and 7c show that the pessimistic
models cause higher slowdown, while moderate ones impact
A76 more than A78AE. Compared to the A76, the Bmoderate 2

models work better on A78AE, and the optimization for the



Orin reduces the slowdowns (inset 7c). The in-order A55
core closely tracks the regulation expectations, and slowdown
gradually declines as models become less pessimistic.

Being less memory intensive, mser presents different re-
sults: moderate regulation models have comparable (some-
times even worse) performance than pessimistic ones (in-
sets 7e, 7f), and differences between levels of assigned target
bandwidth are (as expected) less pronounced. The Cortex-A55
shows instead (inset 7d) similar trends as disparity.

VIII. DISCUSSION AND CONCLUSION

In this study, we aim to bridge the gap between existing
memory bandwidth regulation techniques and the latest ad-
vancements in Arm-based MPSoCs, ultimately providing in-
sights into the feasibility of software-enforced memory band-
width control in next-generation real-time embedded systems.

The assessment of the sustainable bandwidth shows that
memory bandwidth regulation is still a reasonable building
block for predictable real-time systems, even when using Arm
DSU-based systems, but its applicability depends highly on the
workload and the platform. Compared to prior platforms [4],
the difference between peak bandwidth and lowest bandwidth
is exacerbated on DSU-based platforms. Especially the read
performance remains critical, and cores like Cortex-A76 and
A78 are hungry for bandwidth. Writes are less problematic,
as the out-of-order memory architecture can hide latency, even
for in-order cores such as the Cortex-A55.

The newer Arm cores and the DSU introduced a shared
L3 cache, and with that, many new PMCs. We analyzed the
PMCs for their applicability in memory bandwidth regulation.
Unfortunately, the architecture does not provide 100% suit-
able PMCs. We derived different practical models based on
the available PMCs that approximate the memory bandwidth
behavior. For MemGuard, we presented models using a single
PMC, and for MemPol, models using two PMCs. The models
provide usable memory bandwidth regulation for real-world
deployment, balancing accuracy and feasibility, and apply
to the Cortex-A55, A76, and A78 core families in general.
However, as the cores in DSU-based system have much larger
private caches and can thus handle a larger working sets with-
out interference from other cores, soft real-time applications
are less likely to require memory bandwidth regulation.

Our sensitivity analysis of SD-VBS with different bandwidth
levels (Sec. VII) shows that setting low budget causes high
slowdowns. Using the observed minimum bandwidth as a base
is particularly problematic as it starves the cores. Therefore,
finding a reasonable sustainable bandwidth higher than the
minimum one is of paramount importance for practical regu-
lation strategies. However, this process is complex and requires
rigorous testing and knowledge of all applications running on
the cores to exclude the simultaneous occurrence of worst-
case memory access behavior that leads to interference. This
observation follows the general trend in timing analysis that
additional levels of caches increase the discrepancy between
the average observed and worst-case execution time (WCET).

System integrators must carefully assign budgets and balance
isolation and predictability vs. performance.

ACKNOWLEDGMENTS

Marco Caccamo was supported by an Alexander von Hum-
boldt Professorship endowed by the German Federal Ministry
of Education and Research.

REFERENCES

[1] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha,
“Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms,” in 19th IEEE
Real-Time and Embedded Technology and Applications Symposium,
RTAS 2013, Philadelphia, PA, USA, April 9-11, 2013. IEEE
Computer Society, 2013, pp. 55–64. [Online]. Available: https:
//doi.org/10.1109/RTAS.2013.6531079

[2] ——, “Memory bandwidth management for efficient performance
isolation in multi-core platforms,” IEEE Trans. Computers, vol. 65,
no. 2, pp. 562–576, 2016. [Online]. Available: https://doi.org/10.1109/
TC.2015.2425889

[3] A. Zuepke, A. Bastoni, W. Chen, M. Caccamo, and R. Mancuso,
“Mempol: Policing core memory bandwidth from outside of the
cores,” in 29th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2023, San Antonio, TX, USA,
May 9-12, 2023. IEEE, 2023, pp. 235–248. [Online]. Available:
https://doi.org/10.1109/RTAS58335.2023.00026

[4] ——, “Mempol: polling-based microsecond-scale per-core memory
bandwidth regulation,” Real Time Syst., vol. 60, no. 3, pp. 369–412,
2024. [Online]. Available: https://doi.org/10.1007/s11241-024-09422-8

[5] Arm, “Arm DynamIQ Shared Unit-AE Technical Reference Manual,”
https://developer.arm.com/documentation/101322/ Accessed: 2025-04-
05.

[6] Rockchip, “Rockchip RK3588,” https://www.rock-chips.com/a/en/
products/RK35 Series/2022/0926/1660.html Accessed: 2025-04-05.

[7] NVIDIA, “NVIDIA Jetson AGX Orin,” https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-orin/ Accessed: 2025-
04-05.

[8] Arm, “Quality of Service in ARM Sys-
tems: An Overview,” https://community.arm.com/
arm-community-blogs/b/soc-design-and-simulation-blog/posts/
quality-of-service-in-arm-systems-an-overview Accessed: 2025-04-05.

[9] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso, “E-warp: A system-
wide framework for memory bandwidth profiling and management,”
in 41st IEEE Real-Time Systems Symposium, RTSS 2020, Houston,
TX, USA, December 1-4, 2020. IEEE, 2020, pp. 345–357. [Online].
Available: https://doi.org/10.1109/RTSS49844.2020.00039

[10] A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and
F. J. Cazorla, “Leveraging Hardware QoS to Control Contention
in the Xilinx Zynq UltraScale+ MPSoC,” in 33rd Euromicro
Conference on Real-Time Systems (ECRTS 2021), ser. Leibniz
International Proceedings in Informatics (LIPIcs), B. B. Brandenburg,
Ed., vol. 196. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021, pp. 3:1–3:26. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2021/13934

[11] P. Houdek, M. Sojka, and Z. Hanzálek, “Towards predictable
execution model on arm-based heterogeneous platforms,” in 26th
IEEE International Symposium on Industrial Electronics, ISIE 2017,
Edinburgh, United Kingdom, June 19-21, 2017. IEEE, 2017, pp. 1297–
1302. [Online]. Available: https://doi.org/10.1109/ISIE.2017.8001432

[12] M. Zini, G. Cicero, D. Casini, and A. Biondi, “Profiling and controlling
I/O-related memory contention in COTS heterogeneous platforms,”
Software: Practice and Experience, vol. 52, no. 5, pp. 1095–1113,
2022. [Online]. Available: https://doi.org/10.1002/spe.3053

[13] Intel, “Resource Director Technology,” https://www.intel.com/content/
www/us/en/architecture-and-technology/resource-director-technology.
html Accessed: 2025-04-05.

[14] Arm, “Arm Memory System Resource Partitioning and Monitoring
(MPAM) System Component Specification,” https://developer.arm.com/
documentation/ihi0099/ Accessed: 2025-04-05.

https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1109/TC.2015.2425889
https://doi.org/10.1109/TC.2015.2425889
https://doi.org/10.1109/RTAS58335.2023.00026
https://doi.org/10.1007/s11241-024-09422-8
https://developer.arm.com/documentation/101322/
https://www.rock-chips.com/a/en/products/RK35_Series/2022/0926/1660.html
https://www.rock-chips.com/a/en/products/RK35_Series/2022/0926/1660.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://community.arm.com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/quality-of-service-in-arm-systems-an-overview
https://community.arm.com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/quality-of-service-in-arm-systems-an-overview
https://community.arm.com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/quality-of-service-in-arm-systems-an-overview
https://doi.org/10.1109/RTSS49844.2020.00039
https://drops.dagstuhl.de/opus/volltexte/2021/13934
https://doi.org/10.1109/ISIE.2017.8001432
https://doi.org/10.1002/spe.3053
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://developer.arm.com/documentation/ihi0099/
https://developer.arm.com/documentation/ihi0099/


[15] P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger, “A Closer
Look at Intel Resource Director Technology (RDT),” in Proceedings
of the 30th International Conference on Real-Time Networks and
Systems, ser. RTNS 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 127–139. [Online]. Available:
https://doi.org/10.1145/3534879.3534882

[16] N. Dagieu, A. Spyridakis, and D. Raho, “Memguard: A memory
bandwith management in mixed criticality virtualized systems
memguard KVM scheduling,” in 10th Int. Conf. on Mobile Ubiquitous
Comput., Syst., Services and Technologies (UBICOMM), 2016, pp.
21–27. [Online]. Available: https://www.thinkmind.org/index.php?view=
article&articleid=ubicomm 2016 1 40 10072

[17] P. Modica, A. Biondi, G. C. Buttazzo, and A. Patel, “Supporting
temporal and spatial isolation in a hypervisor for ARM multicore
platforms,” in IEEE International Conference on Industrial Technology,
ICIT 2018, Lyon, France, February 20-22, 2018. IEEE, 2018, pp. 1651–
1657. [Online]. Available: https://doi.org/10.1109/ICIT.2018.8352429

[18] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto,
“Bao: A Lightweight Static Partitioning Hypervisor for Modern
Multi-Core Embedded Systems,” in Workshop on Next Generation
Real-Time Embedded Systems (NG-RES 2020), ser. OpenAccess
Series in Informatics (OASIcs), M. Bertogna and F. Terraneo,
Eds., vol. 77. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2020, pp. 3:1–3:14. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/11779

[19] A. Saeed, D. Dasari, D. Ziegenbein, V. Rajasekaran, F. Rehm,
M. Pressler, A. Hamann, D. Mueller-Gritschneder, A. Gerstlauer,
and U. Schlichtmann, “Memory utilization-based dynamic bandwidth
regulation for temporal isolation in multi-cores,” in 28th IEEE
Real-Time and Embedded Technology and Applications Symposium,
RTAS 2022, Milano, Italy, May 4-6, 2022. IEEE, 2022, pp. 133–145.
[Online]. Available: https://doi.org/10.1109/RTAS54340.2022.00019

[20] M. G. Bechtel and H. Yun, “Denial-of-service attacks on shared
cache in multicore: Analysis and prevention,” in 25th IEEE
Real-Time and Embedded Technology and Applications Symposium,
RTAS 2019, Montreal, QC, Canada, April 16-18, 2019, B. B.
Brandenburg, Ed. IEEE, 2019, pp. 357–367. [Online]. Available:
https://doi.org/10.1109/RTAS.2019.00037

[21] I. Izhbirdeev, D. Hoornaert, W. Chen, A. Zuepke, Y. Hammad,
M. Caccamo, and R. Mancuso, “Coherence-aided memory bandwidth
regulation,” in IEEE Real-Time Systems Symposium, RTSS 2024, York,
UK, December 10-13, 2024. IEEE, 2024, pp. 322–335. [Online].
Available: https://doi.org/10.1109/RTSS62706.2024.00035

[22] Arm, “Arm DynamIQ Shared Unit Technical Reference Manual,” https:
//developer.arm.com/documentation/100453/ Accessed: 2025-04-05.

[23] ——, “Arm big.LITTLE Technology,” https://www.arm.com/
technologies/big-little Accessed: 2025-04-05.

[24] ——, “Arm Cortex-A55 Core Technical Reference Manual,” https:
//developer.arm.com/docs/100442/ Accessed: 2025-04-05.

[25] ——, “Arm Cortex-A76 Core Technical Reference Manual,” https:
//developer.arm.com/docs/100798/ Accessed: 2025-04-05.

[26] ——, “Arm Cortex-A78 Core Technical Reference Manual,” https:
//developer.arm.com/docs/101430/ Accessed: 2025-04-05.

[27] ——, “Arm Cortex-A76AE Core Technical Reference Manual,” https:
//developer.arm.com/docs/101392/ Accessed: 2025-04-05.

[28] ——, “Arm Cortex-A78AE Core Technical Reference Manual,” https:
//developer.arm.com/docs/101779/ Accessed: 2025-04-05.

[29] A. Zuepke, “Memory Benchmark,” https://gitlab.com/azuepke/bench Ac-
cessed: 2025-04-05.

[30] A. F. de Lecea, M. Hassan, E. Mezzetti, J. Abella, and F. J. Cazorla,
“Improving timing-related guarantees for main memory in multicore
critical embedded systems,” in IEEE Real-Time Systems Symposium,
RTSS 2023, Taipei, Taiwan, December 5-8, 2023. IEEE, 2023, pp.
265–278. [Online]. Available: https://doi.org/10.1109/RTSS59052.2023.
00031

[31] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated CPU-GPU
Power Management for 3D Mobile Games,” in The 51st Annual Design
Automation Conference 2014, DAC ’14, San Francisco, CA, USA,
June 1-5, 2014. ACM, 2014, pp. 40:1–40:6. [Online]. Available:
https://doi.org/10.1145/2593069.2593151

[32] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Evaluating
attainable memory bandwidth of parallel programming models via
babelstream,” Int. J. Comput. Sci. Eng., vol. 17, no. 3, pp. 247–262,
2018. [Online]. Available: https://doi.org/10.1504/IJCSE.2018.095847

[33] E. Mezzetti, L. Kosmidis, J. Abella, and F. J. Cazorla, “High-integrity
performance monitoring units in automotive chips for reliable timing
v&v,” IEEE Micro, vol. 38, no. 1, pp. 56–65, 2018. [Online]. Available:
https://doi.org/10.1109/MM.2018.112130235

[34] A. Pradhan, D. Ottaviano, Y. Jiang, H. Huang, A. Zuepke, A. Bastoni,
and M. Caccamo, “Arm DynamIQ Shared Unit and Real-Time: An
Empirical Evaluation,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2025, pp. 269–282. [Online].
Available: https://doi.org/10.1109/RTAS65571.2025.00032

[35] Chair of Cyber-Physical Systems in Production Engineering,
“RTCSA2025 MemGuard Mempol,” https://github.com/rtsl-cps-tum/
rtcsa2025-memguard-mempol Accessed: 2025-06-05.

[36] Minerva Systems, “Memory-aware Jailhouse hypervisor,” https://github.
com/Minervasys/jailhouse Accessed: 2025-04-05.

[37] A. Zuepke, “MemPol Implementation,” https://gitlab.com/azuepke/
mempol Accessed: 2025-04-05.

[38] Z. Ning, C. Wang, Y. Chen, F. Zhang, and J. Cao, “Revisiting ARM
debugging features: Nailgun and its defense,” IEEE Trans. Dependable
Secur. Comput., vol. 20, no. 1, pp. 574–589, 2023. [Online]. Available:
https://doi.org/10.1109/TDSC.2021.3139840

[39] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. M. Louie, S. Garcia,
S. J. Belongie, and M. B. Taylor, “SD-VBS: the san diego vision
benchmark suite,” in Proceedings of the 2009 IEEE International
Symposium on Workload Characterization, IISWC 2009, October 4-6,
2009, Austin, TX, USA. IEEE Computer Society, 2009, pp. 55–64.
[Online]. Available: https://doi.org/10.1109/IISWC.2009.5306794

[40] M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and
R. Mancuso, “Rt-bench: An extensible benchmark framework for
the analysis and management of real-time applications,” in Proceedings
of the 30th International Conference on Real-Time Networks and
Systems, ser. RTNS 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 184–195. [Online]. Available:
https://doi.org/10.1145/3534879.3534888

https://doi.org/10.1145/3534879.3534882
https://www.thinkmind.org/index.php?view=article&articleid=ubicomm_2016_1_40_10072
https://www.thinkmind.org/index.php?view=article&articleid=ubicomm_2016_1_40_10072
https://doi.org/10.1109/ICIT.2018.8352429
https://drops.dagstuhl.de/opus/volltexte/2020/11779
https://doi.org/10.1109/RTAS54340.2022.00019
https://doi.org/10.1109/RTAS.2019.00037
https://doi.org/10.1109/RTSS62706.2024.00035
https://developer.arm.com/documentation/100453/
https://developer.arm.com/documentation/100453/
https://www.arm.com/technologies/big-little
https://www.arm.com/technologies/big-little
https://developer.arm.com/docs/100442/
https://developer.arm.com/docs/100442/
https://developer.arm.com/docs/100798/
https://developer.arm.com/docs/100798/
https://developer.arm.com/docs/101430/
https://developer.arm.com/docs/101430/
https://developer.arm.com/docs/101392/
https://developer.arm.com/docs/101392/
https://developer.arm.com/docs/101779/
https://developer.arm.com/docs/101779/
https://gitlab.com/azuepke/bench
https://doi.org/10.1109/RTSS59052.2023.00031
https://doi.org/10.1109/RTSS59052.2023.00031
https://doi.org/10.1145/2593069.2593151
https://doi.org/10.1504/IJCSE.2018.095847
https://doi.org/10.1109/MM.2018.112130235
https://doi.org/10.1109/RTAS65571.2025.00032
https://github.com/rtsl-cps-tum/rtcsa2025-memguard-mempol
https://github.com/rtsl-cps-tum/rtcsa2025-memguard-mempol
https://github.com/Minervasys/jailhouse
https://github.com/Minervasys/jailhouse
https://gitlab.com/azuepke/mempol
https://gitlab.com/azuepke/mempol
https://doi.org/10.1109/TDSC.2021.3139840
https://doi.org/10.1109/IISWC.2009.5306794
https://doi.org/10.1145/3534879.3534888

	Introduction
	Background and Related Works
	Hardware-Assisted Memory Bandwidth Regulation
	Software-Based Memory Bandwidth Regulation
	MemGuard
	MemPol
	PMCs on Arm Cortex-A53, A57, and A72 Cores

	Architectural Evolution of Arm MPSoCs

	Sustainable Memory Bandwidth
	Rockchip RK3588
	NVIDIA Orin

	Performance Monitoring Counter Analysis
	Counter Selection Criteria
	PMC Evaluation

	Regulation Strategies
	Implementation
	Experimental Evaluation
	Single Core Regulation
	Application Sensitivity to Memory Bandwidth Regulation
	Isolation Performance

	Discussion and Conclusion
	References

