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Abstract

In today’s multiprocessor systems-on-a-chip (MPSoC), the shared memory sub-
system is a known source of temporal interference. The problem causes logically
independent cores to affect each other’s performance, leading to pessimistic worst-
case execution time (WCET) analysis. Memory regulation via throttling is one
of the most practical techniques to mitigate interference. Traditional regulation
schemes rely on a combination of timer and performance counter interrupts to
be delivered and processed on the same cores running real-time workload. Unfor-
tunately, to prevent excessive overhead, regulation can only be enforced at a
millisecond-scale granularity.
In this work, we present a novel regulation mechanism from outside the cores that
monitors performance counters for the application core’s activity in main memory
at a microsecond scale. The approach is fully transparent to the applications on
the cores, and can be implemented using widely available on-chip debug facilities.
The presented mechanism also allows more complex composition of metrics to
enact load-aware regulation. For instance, it allows redistributing unused band-
width between cores while keeping the overall memory bandwidth of all cores
below a given threshold. We implement our approach on a host of embedded
platforms and conduct an in-depth evaluation on the Xilinx Zynq UltraScale+
ZCU102, NXP i.MX8M and NXP S32G2 platforms using the San Diego Vision
Benchmark Suite.
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1 Introduction

Homogeneous multi-core systems became mainstream in the real-time embedded com-
munity about a decade ago. From a predictability standpoint, these platforms came
with formidable challenges that have been the focus of a host of research works (Lugo
et al., 2022). But in many ways, such systems are already obsolete. Modern embedded
multiprocessor systems-on-a-chip (MPSoC) embrace heterogeneity. This is necessary
due to the increasing adoption of data-intensive artificial intelligence (AI) algorithms
in embedded and safety-critical domains. CPUs, GPUs, TPUs, on-chip programmable
logic (FPGA), and smart network interfaces (NICs) are some examples of top-tier
processing elements in current-generation MPSoCs. Xilinx’s UltraScale+ and Ver-
sal (Xilinx, 2024b,a) or NVIDIA’s Jetson AGX Xavier and Orin (NVIDIA, 2024b,a)
are among the most recent examples of this trend.

Unfortunately, the explosion in heterogeneity has exacerbated the existing chal-
lenges related to the management of shared memory hierarchy resources. One such
challenge is quality of service (QoS) driven regulation of main memory bandwidth
consumption from heterogeneous processing elements (PE). Software regulation of the
memory bandwidth based on monitoring of performance counters (PMC) has received
significant attention (Yun et al., 2013; Yun et al., 2016) thanks to its wide applicabil-
ity to a broad range of MPSoC that are normally equipped with performance counter
units (PMU).

PMC-based regulation, however, comes with important compromises. Most promi-
nently, it is inherently CPU-centric, because it relies on the ability to install and
process PMC-generated interrupts. Secondly, by design, it does not allow to implement
complex regulation policies accounting for both per-PE activity and global system
behavior. Worse yet, it is challenging to define complex software regulation policies
that account for more than a single performance metric. This contrasts with the wide
range of performance metrics exported by modern platforms at multiple levels of their
complex memory hierarchy—e.g., at the level of PE (ARM, 2016a; Xilinx, 2024b),
interconnect (ARM, 2016b), and memory controller (Sohal et al., 2020; Saeed et al.,
2022). Third, it forces to integrate additional system-level software components at the
OS (Yun et al., 2013) or hypervisor level (Modica et al., 2018; Sohal et al., 2020), with
the corresponding engineering and performance overheads.

This paper stems from the question: Can memory bandwidth regulation be enforced
following a drastically different approach? And, ideally, one that can achieve fine-
grained regulation, acceptably low overheads, and customizable regulation policies
capable of capturing multiple nuances in the performance of complex memory
hierarchies.

In light of this goal, we propose MemPol : a novel approach for memory bandwidth
regulation that targets the aforementioned objectives. By exploiting the heterogeneous
computing elements of MPSoCs, MemPol adopts a low-overhead, polling-based design
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that enables microsecond-scale memory bandwidth regulation and monitoring. Mem-
Pol moves away from interrupt-based regulation and relies on debug primitives to
control bandwidth consumption with minimum intrusiveness. Furthermore, MemPol
allows defining complex regulation functions that combine contributions of multiple
performance counters.

Thus, we make the following key contributions:

� A microsecond-scale memory bandwidth monitor based on periodic polling of per-
formance counters from “outside” of the cores. MemPol does not cause performance
degradation of the applications executing on the cores.

� A low-overhead memory bandwidth regulator that throttles monitored cores using
built-in on-chip debug facilities without causing memory perturbations.

� Per-core memory bandwidth regulation using an on-off controller design.
� The possibility to define software regulation profiles with functions based on multiple
PMC metrics.

� A combination of per-core (local) regulation and global regulation of all cores to
redistribute unused bandwidth between cores, while keeping the overall memory
bandwidth below a given threshold.

� A detailed evaluation that includes the assessments of key memory parameters for
three Arm platforms and a comparison of MemPol with the state-of-the-art.

This paper is an extended version of a previously published work at the RTAS 2023
conference (Zuepke et al., 2023).

MemPol ’s regulation logic can be fully implemented outside of the core-complex.
Our regulator enables the unconstrained use of the most powerful cores of a platform
for application-related workloads by dedicating e.g., energy-efficient, real-time oriented
cores to the management of the regulation logic. Because MemPol leverages debug
primitives, it can be extended to pause/resume the activity of PEs other than CPUs—
albeit our initial prototype is focused on CPU regulation.

As a proof of concept, we implemented MemPol on a range of Arm plat-
forms, namely on the Xilinx Zynq UltraScale+ ZCU102 (Xilinx, 2024b), the NXP
i.MX8M (NXP, 2024a) and the NXP S32G2 (NXP, 2024c) platforms. All platforms
feature four Arm Cortex-A53 application cores, but also a number of smaller Arm-
based real-time cores. MemPol is deployed on one of the real-time cores and regulates
the application cores with 6.25 to 10 µs granularity.

For each platform, we precisely characterized the sustainable bandwidth using a
practical, empirical methodology to measure it. We further correlate the sustainable
bandwidth to the MemPol regulation parameters and the associated cost model.

Although questionably suitable for certified environments, we have validated
the practical feasibility of our debug-based methodology (see Sec. 4.2) on multi-
ple Arm-based boards such as Raspberry Pi 4 (Raspberry Pi Ltd, 2024) and NXP
LX2160A (NXP, 2024b) which feature Arm Cortex-A72 application cores, but lack
small real-time cores. Our evaluation showcases the ability of MemPol to enforce com-
plex regulation policies, such as proportional bandwidth redistribution, by monitoring
a combination of local and global bandwidth consumption. By instantiating MemPol
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with legacy policies, we also compare its performance overhead with state-of-the-art
PMC-based regulation.

The rest of this paper is structured as follows. Sec. 2 discusses limitations of Mem-
Guard designs and proposes alternatives. Sec. 3 presents the new regulator design,
and Sec. 4 its implementation. Sec. 5 assesses the sustainable bandwidth on our plat-
forms and derives parameters for MemPol regulation. Sec. 6 evaluates MemPol and
compares to the state-of-the-art. Sec. 7 discusses related work, and Sec. 8 concludes.

2 Background and Motivation

This section summarizes the key aspects of PMC-based regulation—with focus on its
most common variant, MemGuard (Yun et al., 2013; Yun et al., 2016)—and details
the most important limitations of the approach that constitute the motivation for our
search for a different approach to memory bandwidth regulation.

MemGuard regulates the maximum number of memory transactions that cores are
allowed to perform over a pre-defined period of time (i.e., their memory bandwidth).
Cores are assigned a memory budget that is consumed when cores perform memory
transactions and that is periodically replenished. Cores are idled when the budget is
depleted. Its implementation relies on three main features: (1) a memory bandwidth
monitor; (2) a mechanism to deliver regulation and replenishment interrupts; and (3)
a mechanism to idle cores.

Memory bandwidth is monitored using performance counters. Depending on plat-
forms capabilities, implementations of MemGuard have used PMCs from cores’
PMUs (Yun et al., 2016; Schwaericke et al., 2021) or from the DRAM memory
controller (Sohal et al., 2020; Saeed et al., 2022). Since overutilization of memory
controllers is detrimental to predictability (Sohal et al., 2020), hard real-time sys-
tems dimension the memory budget allowed for regulated cores using the principle
of maximum sustainable bandwidth. That is the maximum bandwidth that a mem-
ory controller can sustain under worst-case memory workload, e.g., row misses in the
same bank, without experiencing overutilization (see Sec. 5). When DRAM controller
performance counters are not available, determining this value requires know-how of
the target platform and non-trivial experimental setups (Serrano-Cases et al., 2021;
Schwaericke et al., 2021).

MemGuard relies on the capabilities of the PMU to deliver a regulation interrupt
to a core upon budget depletion. When such an interrupt is received, the core idles by
either scheduling a CPU-intensive high-priority task (Yun et al., 2016; Saeed et al.,
2022), or by stalling the core at the hypervisor level (Sohal et al., 2020; Schwaericke
et al., 2021). One timer interrupt periodically replenishes the budget and possibly
unblocks the regulated core.

Note that regulation at hypervisor level can only provide a coarse regulation at
core level, while regulation at OS level can enable more fine-grained regulation at task
level. However, the latter also requires changes to the operating system. Although
MemPol could be extended to achieve tighter integration with the operating system
and enable per-task regulation, in this work, we focus on the lower-level mechanisms
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to implement bandwidth regulation, and assume per-core regulation. We defer further
integration with the OS to future work.

2.1 MemGuard Limitations

Interrupt overheads. MemGuard delivers interrupts to a core to signal both regula-
tion and replenishment. Such an interrupt-based approach generates an overhead that
increases with the frequency of the interruptions, i.e., with shorter replenishment peri-
ods, or with smaller budget assignments. Interrupt overheads pose severe constraints
on the enforcement of both small memory budgets and short regulation periods.
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Fig. 1 Impact (slowdown) of MemGuard ’s timer and regulation overheads on a memory-intensive
application as a function of the replenishment period. Implementation on Linux on the Xilinx Zynq
UltraScale+ ZCU102 (Xilinx, 2024b). Results are in line with other work (Yun et al., 2016; Saeed
et al., 2022) and extended beyond 100 µs.

As an example, Fig. 1 reports the overheads of timer and regulation interrupts in
our setup for the version of MemGuard that we have used in our experimental compar-
ison (see Sec. 6). The figure shows the slowdown of a memory-intensive application1

as function of the replenishment period. The budget is measured as the number of
L2 cache refills. Fig. 1 separately shows the impact of timer and regulation (PMU)
interrupt, and timer interrupts only. As shown, for short regulation periods (32 µs),
MemGuard is affected by extremely high overhead—up to 2.4 slowdown ratio. These
effects are in-line with previous studies (Yun et al., 2016; Saeed et al., 2022) that have
shown around 10% overheads for periods of around 100 µs.

Inherent pessimism. Although interrupt handlers normally have minimum memory
footprint, they generate memory transactions that are reflected in the very same met-
rics monitored by MemGuard . Precisely accounting for this interference is complex,
resulting in pessimistic worst-case bandwidth thresholds.

1bandwidth from the IsolBench testsuite (https://github.com/CSL-KU/IsolBench).
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Single monitoring dimension. To reduce implementation complexity and the
number of interrupts, MemGuard monitors only one memory consumption metric—
e.g., cache write-backs, cache refills, or memory controller utilization—at a time.2

Store instructions on the cores result in higher memory controller utilization than
load instructions, because they cause write-backs. Therefore, if only cache refills are
monitored, the worst-case scenario consists of a 1:1 ratio between refills and write-
backs (Sohal et al., 2020). But assuming so leads to overall memory under-utilization.
At the same time, regulation only based on cache refills might not correctly take into
account write-heavy phases that do not generate linefills (see Sec. 6.2).

Coarse regulation. Access to memory often results in bursts of cache refills and
transactions. To avoid excessive idling of regulated cores and to smooth out the impact
of such bursts, MemGuard ’s budgets and periods must be set to relatively large values.
Although beneficial to reduce the impact of interrupt overheads, regulating over large
periods results in prolonged memory bursts (Sohal et al., 2020) and in an uneven
distribution of memory bandwidth within the period. This complicates the adoption
of, e.g., automotive techniques (Moon et al., 2021) that use offsetting to distribute the
peak load of read-execute-write (Hamann et al., 2017; Pellizzoni et al., 2011) workloads
over successive periods. Moreover, as mentioned in Sec. 1, it can cause accelerators to
receive less bandwidth than their assigned quota.

2.2 An Alternative Regulation Design

Interrupt overheads and a non-flexible single-dimension monitoring lead to severe com-
promises for MemGuard -based systems. In particular, regulating using core-managed
interrupts—either for polling (Sohal et al., 2020; Saeed et al., 2022) or regulation (Yun
et al., 2016; Bechtel and Yun, 2019)—cannot eliminate the overheads reported in
Fig. 1.

An alternative to avoid interrupting useful computation on the regulated cores is
to exploit the heterogeneity of MPSoCs and monitor the PMU counters from outside
the core cluster, e.g., using one of the many real-time cores available on such plat-
forms. However, while, e.g., on Arm platforms, per-core performance counters are also
accessible from outside of a core (see Sec. 4.2), per-core PMU interrupts can only be
delivered to other cores on the same complex.3 Currently, therefore, the only suitable
design to perform PMC-based regulation from the outside is to combine polling of
PMU counters with a control action to throttle (i.e., idle) the cores. To fully prevent
interrupt overheads, the control action should also be done from the outside and must
not involve any type of notification to the to-be-regulated cores. Furthermore, a poll-
based design enacts the simultaneous use of multiple performance counters to perform
regulation, while keeping overheads constant.

Sec. 3 presents MemPol , a poll-based regulation design that operates from outside
the cores and regulates multiple monitoring dimensions with low overhead.

2In Bechtel and Yun (2019), cache refills and write-backs are considered in separated regulations, but
their memory contributions cannot be combined together.

3For GICv3-based systems, Arm recommends using local PPI interrupt 23.
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3 MemPol – Regulation from Outside the Cores

Fig. 2 MemPol architecture. Applications cores c0 to c3 are regulated by an external controller
logic that accesses the application cores’ PMU counters as memory-mapped devices and that halts
the cores via their debug interfaces.

The first objective of MemPol is to remove any overheads from the cores to be
regulated. This is achieved with a design that operates from the outside of the target
cores and specifically (1) monitors the last-level cache (LLC) activity by polling the
cores’ PMU counters, and (2) uses a core-independent interface (e.g., the CoreSight
debugging interface, see Sec. 4.2) to halt cores when they exceed their given memory
budget. The controlling logic of MemPol can be implemented on one of the application
cores, on a smaller companion core, e.g., Cortex-M and Cortex-R cores, or even in an
FPGA. Fig. 2 presents the architecture of MemPol .

The second objective of MemPol is to enable a multi-dimensional regulation based
on the combined contribution of multiple PMU counters, without impacting overheads.
In particular, we consider the accumulated read and write activity of a core, i.e., the
sum of last-level cache misses and write-backs (Sec. 3.1). Since the controller polls
PMU counter values, within a polling period, cores can generate a high number of
transactions—thus potentially overshooting their assigned budget—that can be only
accounted for in the next polling instant. To contrast overshooting effects, MemPol
has a short polling period P in the microsecond range (Sec. 3.2).

Compared to MemGuard , MemPol realizes a different regulation logic that does
not periodically replenish cores’ budgets. Instead, regulation is enacted every polling
period P via an on-off controller logic (Sec. 3.3) that can idle cores for time intervals as
short as P . As programs show different behavior during their execution, i.e., memory-
intensive phases vs. computation-intensive phases, we limit the burstiness of memory
accesses using both a sliding window method (Sec. 3.4) and a combined strategy to
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account for non-memory-intensive phases (Sec. 3.5). Overall, cores can experience
multiple on/off transitions during the length R of the sliding window, but can also
idle for periods longer than R due to overshooting under small bandwidth-regulation
(Sec. 3.6).
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Fig. 3 Comparison of the regulation behavior of MemPol (polling at 6.25 µs, sliding window size
50 µs) and MemGuard (regulation period 1 ms) on ZCU102 regulating a worst-case memory reader
at 50% sustainable memory bandwidth. In both cases, PMU counters are sampled every 6.25 µs. For
MemPol , the average over 200 µs is also shown for better visualization of its resulting regulation.
In the given example, both mechanisms achieve the same regulation results over longer time spans.
MemPol just regulates faster.

As an example of the low-overhead, high-resolution capabilities enabled by the
MemPol design, we implement two regulation strategies that operate at microsecond
scale: (i) a local per-core controller that regulates a core’s memory bandwidth w.r.t. a
given local per-core budget independently for each core, and (ii) a global controller that
redistributes unused bandwidth to demanding cores, but keeps the overall bandwidth
of all cores below a given global budget (Sec. 3.7). Contrary to the complex interactions
among cores that would be needed to realize a global controller under MemGuard ,
our global controller relies on the poll-based regulation and only requires minimal
additions compared to the local one. Fig. 3 gives an overview of the fine-grained actions
performed by MemPol in comparison to the coarse-grained ones used by MemGuard .
(See Sec. 6.1 for details.)

3.1 Regulation Cost Model

Assuming a system comprising a set of cores C, we model a core ci’s performance
counters for read and write accesses as functions over time PMUr

i (t) resp. PMUw
i (t),

which return non-decreasing integer values that relate to memory accesses. We intro-
duce the coefficients αr and αw to account for different impacts that reads and writes

8



369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

have on the saturation level of the memory subsystem.4 We then sample the PMC
values every P time units and aggregate the memory activity as a monotonic function
Ai(t) = αrPMUr

i (t) + αwPMUw
i (t).

The memory bandwidth that can be extracted from the memory controller highly
depends on the memory access patterns and can deviate between best-case and worst-
case scenarios by an order of magnitude or more (see Sec. 5). Previous experiments
have shown that in best-case conditions like linear memory accesses the cores are the
limiting factor, while in worst-case conditions like continuous row-misses the memory
controller becomes a bottleneck (Sohal et al., 2020). Given our real-time focus, the
cost model for regulation is based on the sustainable memory bandwidth Bsustainable,
i.e., the minimum bandwidth that can be extracted by all cores in parallel in worst-
case scenarios. We can therefore assign a fraction of the sustainable bandwidth to each
core ci as Bi,

∑
j∈C Bj ≤ Bsustainable. The maximum allowed number of aggregated

accesses to stay within the budget limits during time P is Abudget
i = Bi ∗ P .

3.2 Overshooting

In MemGuard , the PMU triggers an interrupt whenever a core exceeds its budget.
Instead, a polling controller samples PMCs periodically and can only detect budget
overruns for the previous period P . This might results in overshooting the target
budget. Under real-time constraints, overshooting is even exacerbated. In fact, the
regulation is based on the sustainable worst-case bandwidth and not on the real mem-
ory utilization at the memory controller, which can handle peak best-case bandwidths
much higher than the ones used for regulation (e.g., see Sec. 5). We characterize the
peak bandwidth that can be accessed by a single core as Bpeak−core and use the fac-
tor β = Bpeak−core/Bsustainable to express overshooting in relation to Bsustainable. We
further use the factor βi = Bpeak−core/Bi to describe the overshooting of a core ci in
relation its configured bandwidth target Bi.

A second contributing factor to overshooting is delays in the control path between
observing that a core has exceeded its bandwidth budget, sending a halt request to
the core, and the point where a core actually stops issuing further memory requests.
We denote this delay as D and assume that the core stops in reasonable time D ≤ P
within the polling period P (see Sec. 4.3). The product 2βi then describes the worst-
case overshooting when a core ci accesses memory at peak bandwidth and exceeds its
budget at the beginning of P , but takes to the beginning of the next period to halt.

3.3 On-Off Controller as Bandwidth Limiter

To regulate a core ci at time t > t0, MemPol derives a set-point spi(t, t0) = Ai(t0) +

⌊ t−t0
P ⌋Abudget

i based on the core’s memory accesses Ai at time t0 and its configured
budget. Using an on-off controller, MemPol halts a core if Ai(t) > spi(t, t0), and let
the core run (again) if Ai(t) ≤ spi(t, t0). At each P , the core’s set-value budget is

increased by Abudget
i .

4For example, in flash memory, reading is much faster than writing.
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3.4 Sliding Window Technique to Control Burstiness

Fig. 4 Sliding window technique. At time t=8, the burst (yellow gradient) is within a previous
budget gradient from time t=0 (green gradient), but not within the current budget gradient at the
start of the sliding window at time t=5 (blue gradient). Based on its recent history in (t−wP, t) (red
box), the core will be rate-limited for at least two periods in (t, t+2). See Sec. 3.4.

Real-time programs tend to access memory in burst. For example, after long idle or
computation phases with few memory accesses, a program might access data again to
prepare for the next iteration. The yellow gradient line in Fig. 4 depicts such a burst.
Since the on-off controller from Sec. 3.3 uses as point of reference t0 = 0, it includes
the non memory-intensive phase (green gradient line in Fig. 4) of the core. This would
allow the core to run and access memory even during the burst at time t = 8, which
is instead potentially detrimental for the real-time guarantees of other cores.

We therefore cap the budget of a core by “forgetting” the core’s unused bandwidth
and limit the core’s burstiness with a sliding window of w polling periods. At time t,
we use t − wP as start of the window, and derive a new budget gradient (the blue
gradient line in Fig. 4). We then move the window to the right each polling period
(the red box in Fig. 4).

3.5 Resulting Combined Control Strategy

MemPol ’s controller combines the strategies from Sec. 3.3 and Sec. 3.4 depending on
the behavior in the previous w polling periods.
Not rate-limited. A sliding window (Sec. 3.4) tracks the behavior of a core ci if at

time t is has not exceeded its budget wAbudget
i for at least the last w polling periods.

In each period P , the reference point t0 of the budget gradient is moved to the current
start of the sliding window.
Rate-limited. The first time core ci exceeds its given budget wAbudget

i at time t, the
reference t0 of the sliding window is frozen at t0 = t − wP , and the on-off controller

10



461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

Algorithm 1: Controller implementation (Sec. 3.5)

1 input:

2 Abudget
i ◁ budget, number of memory accesses

3 w ◁ history size, equal to size of sliding window
4 αr, αw ◁ weight-factors for reads and writes

5 init:
6 hist[0..w−1] = αr ∗ pmcr + αw ∗ pmcw ◁ history data
7 i = 0 ◁ position in history data (0..w−1)
8 tlrt = w ◁ time since last rate-limited (0..w−1) or (initially) not (w)
9 spvlrt = undef ◁ set-point value at start of rate-limiting

10 loop:
11 if tlrt < w then ◁ rate-limited mode
12 tlrt = tlrt + 1 ◁ age rate-limiting

13 spv = spvlrt + tlrt ∗ Abudget
i ◁ spv from start of rate-limiting

14 else ◁ non rate-limited mode

15 spv = hist[i] + w ∗ Abudget
i ◁ spv from start of sliding window

16 end
17 val = αr ∗ pmcr + αw ∗ pmcw ◁ read PMCs and apply weighting
18 delta = val - spv ◁ signed delta value, integer overflow
19 if delta > 0 then ◁ PMC above set-point value, throttle
20 tlrt = 0 ◁ (re-)start aging of rate-limiting
21 spvlrt = spv ◁ further budgeting based on spv
22 hist[i] = spvlrt ◁ update history with rate-limited value
23 throttle() ◁ halt core if running

24 else ◁ PMC below set-point value, resume or keep running
25 hist[i] = val ◁ update history with current value
26 resume() ◁ resume core if halted

27 end
28 i = (i + 1) MOD w ◁ select next position in history data

(Sec. 3.3) regulates ci until its budget returns below the budget gradient rooted in t0
for at least w polling periods.

Alg. 1 presents the resulting controller implementation, which stores in hist[] the
last w values of Ai(t) and tracks in tlrt (aging counter) the last time that the budget
was exceeded. tlrt also defines the current control mode (0..w − 1 rate-limited, w not
rate-limited). While in rate-limited mode, the variable spvlrt tracks the set-point value
of the budget gradient.

The controller starts in not rate-limited mode and initializes the history data with
current PMC values (Lines 6–9). In each iteration of the control loop, a current set-
point value spv is calculated depending on the current controller mode. In rate-limited
mode, the controller ages tlrt and derives spv (Lines 11–13) from the variable spvlrt set
at the start of rate-limiting (Line 21). Otherwise, spv is set to the history value at the
start of the sliding window (Line 15). Afterwards, the controller samples the current
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PMC value (Line 17). If the PMC value is above spv, the controller enters rate-limiting
mode (Lines 20–23): it sets tlrt = 0 to keep the controller in rate-limited mode for at
least the next w loops and it throttles the core. The current spv is copied into spvlrt
and defines the base for further budgeting. spv is also stored in the history data to
keep the burst bounded. Once active, if rate-limited mode is entered multiple times,
the budget gradient established by spvlrt remains constant. When PMC values drop
below spv, the controller resumes the core and updates the history data (Lines 24–26).

3.6 Setting Regulator’s Budgets
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Fig. 5 Overshooting in relation to Bsustainable by a certain factor (x axis) and the resulting blocking
time (y axis) for different bandwidth levels (%) in a regulation at 6.25 µs. Lower bandwidth levels
observe higher blocking times. The maximum observed overshooting in relation to Bsustainable on
the ZCU102 is factor 8.46 (dotted vertical line), see Sec. 5.2.

Under MemPol ’s regulation strategy, the amount of time that a core ci is throttled
depends on “how-much” it overshoots its budget Bi, which is accounted for in βi.
The resulting worst-case blocking time of ci is therefore 2βiP . Fig. 5 visualizes such
blocking times as function of the overshooting factor normalized to Bsustainable. For
example, if core ci overshoots Bsustainable by factor 10 (Bpeak−core = 10×Bsustainable)
and has an assigned budget Bi of 10% of Bsustainable, it will be halted for at least
100 polling periods. With a polling period of 6.25 µs, as used in our regulation on
the ZCU102 (see Sec. 5.2), this corresponds to 625 µs blocking time. The maximum
overshooting factor normalized to Bsustainable observed in our experiments was β =
8.46 on the ZCU102 (see Sec. 5.2), 11.08 on the i.MX8M (see Sec. 5.3), and 6.51 on
the S32G2 (see Sec. 5.4).

Under MemGuard regulation instead, the blocking time is constant and upper-
bounded by the length of a replenishment period. In practice, though, the blocking
time of MemGuard can be even higher than MemPol ’s, since the typical regulation
period of MemGuard is 1 ms.

12
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3.7 Combined Local Per-Core and Global Regulation

The logic presented in Sec. 3.1–3.5 implements local per-core controllers that are inde-
pendent of each other. However, the polling-based regulator can be easily extended
to implement a global controller that uses the same regulation logic, but observes the
sum of the memory accesses of all cores and the sum of all budgets. We note that,
contrary to MemGuard -based regulation, the global controller can be implemented
alongside the local one and does not require complicated interaction among cores.

The control decision of the global controller to halt or
run cores impacts the local per-core controllers as follows:
• per-core controller=run ▷ run
• per-core controller=halt ∧ global controller=run ▷ run
• per-core controller=halt ∧ global controller=halt ▷ halt

The global controller overrides a per-core controller decision only if the previous
bandwidth demand of all cores was below the configured budget. Additionally, the
global controller updates per-core controller’s t0 to t, thus forcing cores to acknowledge
the actual used bandwidth and preventing penalties due to the overriding forced by the
global controller. The redistribution scheme stops as soon as the bandwidth demand
increases.

3.8 Regulator Sliding Window Size Settings

The regulation model allows for different sliding window sizes w and bandwidth set-
tings B for the per-core and the global controller. An assignment is valid as long as
wglobal ≤ maxj∈C(wj) and

∑
j∈C Bj ≤ Bglobal.

Setting per-core wi value is particularly sensitive to the burstiness of applications
executing on core ci. Although an actual value should be derived from the temporal
behavior of the regulated applications, Sec. 3.4 hints to the possible compromise of
limiting the budget during a burst to wiA

budget
i , and the time the regulator “forgets”

previous bursts to wiP .
On the global-controller side, one would intuitively try to set the wglobal to a very

small value. But as the global controller has no influence on the distribution of memory
bursts on the cores and the decisions of the per-core controllers, a small wglobal value
would not result in a better regulation than setting wglobal to similar values as for the
per-cores controllers.

In this paper, we opted to use the same w value for all per-core and the global
controller and leave an evaluation of different w trade-offs for future work.

4 Implementation

Before explaining the main components of MemPol , we briefly summarize the relevant
features of the Arm architecture and the commonalities of the platforms that have
been used for our implementations on the Xilinx Zynq UltraScale+ ZCU102 (Xilinx,
2024b), the NXP i.MX8M (NXP, 2024a), and the NXP S32G2 (NXP, 2024c).
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4.1 SoC Architecture and CoreSight Debugging Capabilities

Our target platforms include four Arm Cortex-A53 application processor (AP) cores
and additionally one or more Arm Cortex-M or Cortex-R real-time processor (RP)
cores. The AP cores feature private L1 caches and a shared L2 cache (LLC) and
reside in the full-power domain (1 GHz speed or faster) of the SoC. The RP cores are
connected to the low-power domain (200–500 MHz speed) of the SoC and have access
to private tightly-coupled memories (TCM). A central cache-coherent interconnect
(e.g., Arm CCI-400) connects the low- and full-power domains and the main memory
controller(s).

Arm defines a common infrastructure (CoreSight) for hardware debugging of its
cores (ARM, 2017). CoreSight specifies registers of memory-mapped debug devices on
a low-bandwidth APB bus that can be accessed through a debug access port (DAP).
Additionally, the CoreSight infrastructure is accessible for on-chip debugging via the
low-power domains on most Arm SoCs. To debug devices connected to CoreSight,
the typical setup comprises per-core debug interfaces, performance counters (PMU),
trace interfaces, cross trigger interfaces (CTI), and a shared cross trigger matrix
(CTM) (ARM, 2018a, 2016a). The CTI exposes core-specific input signals to halt and
resume a core, and an output signal to indicate that the core triggered a halting con-
dition. The CTM connects the input and output signals from the CTIs of the cores
and allows halting multiple cores on a debug event in a synchronized manner.

The memory-mapped debug interface configures debug trigger conditions, such as
breakpoints and watchpoints. It also provides access to a bi-directional debug com-
munication channel register and allows the injection of instructions into the pipeline
once the core is halted. A debugger obtains indirect access to the core’s registers by
injecting instructions to load or store the core’s current registers from or to the debug
communication channel register. Being at the highest privilege level, the debugger has
access to all of the core’s registers. Similarly, information provided by performance
counters can also be controlled by the memory-mapped PMU interface. Arm mentions
the workflows for debugging by an external hardware debugger or by a self-hosted
software debugger running on other cores (ARM, 2016a).

4.2 Exploiting Memory-Mapped Debug and PMU Registers

In the standard workflow to halt a core via the memory-mapped CTI registers, a
debugger triggers the debug request input of the core. The core eventually enters
debug halt state. Before a new request can be sent, the debugger acknowledges the
previous debug request, then polls the CTI to ensure that the previous request has
been properly de-asserted. To resume a core, a debugger must trigger a debug restart
signal via the CTI. The core automatically acknowledges this request.

MemPol mimics the behavior of a debugger and appropriately manipulates the
CTI debug registers to stall and restart cores. After initial programming, each halt
or resume request requires write transactions to the CTI’s trigger pulse register, and
to the CTI’s trigger acknowledge register for the acknowledgment of a previous debug
request. We discovered experimentally that polling for previous requests is not required
if there is a sufficient delay between the writes to the acknowledge register and the
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trigger register to resume the core. This reduces the number of required memory
transactions for a halt-resume cycle to three writes to CTI registers: trigger halt,
acknowledge, and trigger resume. In any case, access to the core’s debug interface is
not needed, as the core’s state is not to be modified.

To monitor the PMCs, the PMU register interface provides full access to all six
performance counters of a core. After initialization, reading a PMC requires a sin-
gle read transaction. In our experiments, accesses to a core’s memory-mapped PMU
registers in a tight loop from a second core show no measurable impact on the perfor-
mance on the first core. Likewise, the Arm documentation mentions that cache- and
memory-related PMCs do not impact a core’s execution behavior (ARM, 2016a). This
allows for interference-free remote monitoring.

4.3 MemPol Regulator

We implemented the regulator on one of the real-time cores on the specific SoCs.
The regulator exposes a memory-mapped interface in the TCM of its core. Following
the design of hardware registers, this interface comprises status and control registers.
After booting, a main loop polls the control registers and updates status registers
periodically. The interface also exposes the full internal state of the four per-core
controllers and the global controller with history buffers of up to 128 entries. This
allows inspecting and debugging the regulator’s state from the AP cores. For tracing
purposes, we used the remaining TCM as a trace buffer to record PMC values.

When enabled, the regulator first programs the last two PMCs of each core (events
0x17 L2 data cache refill, 0x18 L2 data cache write-back), initializes the regulator, and
starts the control loop. In each iteration of the control loop, the regulator (1) reads
the two PMU counters of each of the four AP cores; (2) takes control decisions for
each core based on the per-core and the global controller settings; (3) halts, resumes,
or leaves the core’s state unchanged; and (4) waits for the start of the next control
loop period.

To give cores sufficient time to acknowledge a previous halt request before resum-
ing, we spread the sequence of halting/resuming a core (three memory transactions
with delays) as either two CTI transactions in the halting case (trigger halt + trigger
nothing) and two CTI transactions in the resume case (acknowledge + trigger resume).
If a core’s state is unchanged, we perform two dummy writes to the CTI trigger regis-
ter (trigger nothing + trigger nothing). We further interleave the CTI accesses of all
cores, i.e., perform the first CTI transactions for c0..c3, then followed by the second
CTI transactions for c0..c3. This pattern and the dummy writes ensure a similar exe-
cution time in each regulation loop and ensure that cores can fully halt (resp. resume)
their activities in parallel to the remaining execution of the control loop and the read-
ing of the PMU registers (in the next loop iteration). In fact, our experiments showed
that, after sending the halt signal, cores do not immediately stop, but remain active
for some time in the presence of outstanding memory transactions. In an experiment
on the ZCU102 where a Cortex-A53 core sends a halt signal to itself and then monitors
a timer to detect when it eventually halts, we observed a maximum delay of 320 ns by
adding read-modify-write operations (store byte) to cold cachelines before and after
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the halt request. The core was able to emit up to 8 further read-modify-write opera-
tions after sending the halt. This number matches the 8 outstanding linefills per core
documented for the L2 memory subsystem of the Cortex-A53 core complex (ARM,
2018a). Since all four cores can have outstanding transactions, we assume the worst-
case halt delay to be at most 1.5 µs on the ZCU102. In our experiments, we observed
a delay of around 1 µs.

The regulator is implemented in a bare-metal C application and compiled to Arm
Thumb (Cortex-M) or Arm code (Cortex-R). The implementation requires between
4 and 8 KB code (the larger version includes formatted console output and tracing),
3 KB of data (controller state), and 1 KB stack. Code and data of the regulator is kept
in the TCM of the RP, so instruction fetches and data accesses of the regulator do
not cause memory interference to the APs. The regulator uses standard 32-bit integer
arithmetic and multiplication; no division is needed.

Overall, the 16 transactions to CoreSight registers—i.e., eight to read PMU coun-
ters and eight to throttle cores—dominate the execution time of the specific regulator
implementation on our platforms (see Sec. 5). Mapping the CoreSight registers as
shared device, rather than using a uncached strongly-ordered mapping, significantly
speeds up write operations, as regulator core does not need to wait for transactions
to complete. This allows the writes to the CTI registers to be queued and serialized
by the interconnect next to the APB bus rather than the core. We place a DSB mem-
ory barrier instruction at the end of the control loop to reduce jitter in the control
loop. This ensures that any outstanding writes to CTI registers have finished before
starting a new round and reading from the PMU.

4.4 Side Effects

We have observed the following side effects when using MemPol .

Deeper CPU idle modes. Access to the CoreSight registers require that the Cortex-
A53 cores are online. This interferes with the power management subsystem of the
Linux kernel which turns cores off in deeper power saving modes. Unfortunately, this
takes the cores’ CoreSight registers offline as well. This causes any access to the core’s
CoreSight registers to either fail with a data abort exception or get stuck. We therefore
have to disable any deeper power saving modes beyond the WFI instruction to idle
the cores.5 We do not consider this to be a problem for real-time systems that need
memory bandwidth regulation, as waking up from deeper power saving modes increases
interrupt latencies and is therefore typically disabled.

Freezing system timer in debug mode. Cores entering debug halt state might
also halt the global system timer that drive the cores’ private virtual and physical
timer interrupts. Halting the time and related timer interrupts is a handy feature for
system software development when using an external hardware debugger, however this
feature interferes with time keeping of the cores when MemPol is used. Likewise, other
peripherals can change their behavior in debug mode as well. This behavior depends
on the SoC and needs to be disabled in the specific peripherals. We also do not consider

5E.g. echo 1 > /sys/devices/system/cpu/cpu0/cpuidle/state1/disable.
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this to be a problem when using MemPol , as any problems with non-working timer
interrupts and I/O show early during testing.

External Hardware Debugging. The setup of CTI and PMU requires taking own-
ership of the debug interface by disabling software lock registers and then configuring
the devices. This interferes with any external hardware debugger that also claims these
devices. We have not fully tested hardware debugging together with MemPol , but
using an external hardware debugger will likely interfere with the regulation. For exam-
ple, the integrated logic analyzer (ILA) for FPGA development on the ZCU102 takes
priority when using the SoC’s debugging features and disables MemPol ’s capabilities
to halt or resume cores.

SoC Debugging and TrustZone. TrustZone is a feature of Arm processors that
introduces secure and non-secure execution modes of the cores and related access bits
for all components in an SoC ARM (2016a). This allows to fully isolate security-
sensitive software in the SoC, while Linux or an RTOS run in non-secure mode. To
separate debugging of secure from non-secure components down to the hardware level,
the Arm architecture defines an authentication interface of four signals for invasive /
non-invasive debugging in secure / non-secure execution state. Access to the CTI and
PMU registers requires at least the invasive resp. non-invasive debugging of non-secure
execution state (DBGEN, NIDEN) to be enabled. Monitoring and debugging in secure
execution state (TrustZone mode) is instead enabled by SPIDEN and SPNIDEN signals.
We have not tested MemPol with TrustZone, and we do not consider regulating secure
applications to be relevant for real-time use cases, as TrustZone introduces additional
jitter and interference in the caches. Note that MemGuard faces similar challenges in
setting up PMU counters to monitor secure applications from a non-secure hypervisor
or operating system. See Ning et al. (2021) for further details on the security impact
of on-chip monitoring and debugging facilities.

5 Platform Assessment and Sustainable Bandwidth

We now evaluate our platforms w.r.t. their sustainable bandwidth and their CoreSight
register access timing to derive platform-specific settings for the MemPol regulation.

5.1 Determining the Sustainable Bandwidth

We use a dedicated benchmark to evaluate the sustainable memory bandwidth of the
platforms.6 Similar to the USTRESS benchmark (Sohal et al., 2020), the benchmark
probes the memory bandwidth of the DRAMmemory controller with different memory
access patterns and increasing step sizes over a large memory buffer.

As the memory controller reads and writes memory in units of full cachelines,
the benchmark issues various read, write and modify operations on cachelines. The
difference between write and modify operations is that write operations always write
to full cachelines, while modify operations only update a part of a cacheline, e.g.,
by overwriting just a single byte. Arm CPUs detect full writes to cachelines and
in this case suppress fetching cachelines from the memory controller (ARM, 2018a).

6The benchmark is available at https://gitlab.com/azuepke/bench.
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Therefore, read and write operations stress the read and write performance of the
memory controller independently, while a large number ofmodify operations eventually
leads to an interleaved read/write pattern once all cachelines in the caches become
dirty, as for each modification a new cachelines is read and an older one is written
back. The interleaved read/write pattern additionally stresses the internal scheduling
capabilities of the DRAM controller, which prioritizes reads over writes, leading to
worst-case scenarios. Lastly, by increasing the step size of memory accesses in power-
of-two steps, the benchmark probes specific bits of the physical addresses to trigger
the worst-case behavior of DRAM, i.e., row misses in the same DRAM bank. The
recent work of Fernandez-De-Lecea et al. (2023) provides a comprehensive overview
on the multicore interference effects in DRAM controllers.

We obtain the sustainable bandwidth results by running the benchmark on Linux.
Except for the default processes by the specific distributions, the Linux system is
mostly idle. No graphical user environment is running. We disabled power-saving7 and
configured each system to support 128 MiB of huge pages.8 The benchmark is pinned
to the first CPU. We let the benchmark test different memory access patterns for
10 seconds each on a 32 MiB sized memory buffer that is mapped using 2 MiB huge
pages.9

Figures 6, 7, and 8 show the results of the benchmark runs on our platforms.
Straight lines show the observed memory bandwidth on the CPU core, while dotted
lines show the sum of the two PMCs relevant for bandwidth regulation (see Sec. 4.3).

The benchmark performs three types of read operations, namely load using normal
load instructions, ldnp using non-temporal loads, and prfm L1 using prefetches to the
L1 cache (PRFM PLDL1KEEP instruction). Prefetches to the L2 cache (not shown) yield
similar results. Prefetches achieve much read higher performance in general, as they
don’t block the pipeline and get handled by the memory subsystem in the background.

Likewise, the benchmark performs three types of write operations (to full cache-
lines), store using normal store instructions, stnp using non-temporal stores, and dc
zva using the data cache zero instruction. The different types of stores show similar
performance characteristics. However, the figures show that the selected PMCs 0x17

for L2 data cache refills and 0x18 for L2 data cache write-backs slightly undercount
(dotted lines) the bandwidth observed at the core.

Lastly, the benchmark performs two types of modify operations by using normal
store (mod) and non-temporal store (mod stnp) instructions. As expected, figures
show that the PMC bandwidth is twice as high as the one at the core, since modify
comprises both read and write operations.

The results on all three platforms show that the achievable memory bandwidth
drops when the step size increments, until it plateaus at a specific minimum bandwidth
(the empirically obtained sustainable bandwidth). The results then slightly increase
again at step sizes 131072 and 262144. This is most likely a side effect of the benchmark
as the number of accessed cachelines shrink in each increment and cache hits become
more likely.

7We set the scaling governor setting of all CPUs to performance.
8sysctl -w vm.nr hugepages=64
9bench --delay 10000 --size 32 --huge --perf --cpu 0 --auto --all --csv x.csv
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Running multiple instances of the benchmark on each CPU in parallel confirms that
the memory controller is the bottleneck, rather than the CPU cores, the interconnect,
or the caches.

Our selection of αr and αw parameters for the regulation is guided by the differ-
ences in achievable sustainable bandwidth shown by read and write operations. For
example, if writes show a significantly lower bandwidth behavior than reads, we want
the regulator to penalize write-heavy applications over read -heavy ones, and adjust
the two factors inversely proportional to their bandwidth. In practice, we keep αr = 1
and increase αw > 1 accordingly to compensate for the heavier impact of the writes.
This results in a simple linear model of bandwidth usage for both reads and writes.
Note that the factors can be set differently, e.g., to account for possible denial-of-
service attacks on the writeback buffers in the shared cache (Bechtel and Yun, 2019),
although we haven’t conducted further evaluations on this aspect.

We discuss the individual results in the following sections.

5.2 Xilinx Zynq UltraScale+ ZCU102

The Xilinx Zynq UltraScale+ ZCU102 (Xilinx, 2024b) is a revision 1.0 board equipped
with a zu9eg SoC and 4 GiB DDR4 RAM. Each Cortex-A53 core has separate 32 KiB
L1 caches for instruction and data. The four APs are configured in a single cluster
configuration and share 1 MiB of L2 cache. Next to the APs running at 1.2 GHz,
the SoC provides two Cortex-R5 RPs running at 500 MHz. Each Cortex-R5 core is
equipped with 128 KiB of local memory (TCM). The SoC additionally includes a
programmable logic (PL) part (an FPGA) that is not used by our experiments. We
include the regulator in the BOOT.BIN file of the system and load the regulator on the
first Cortex-R5 core at boot time. We further use the PetaLinux 2021.1 distribution
provided by Xilinx with Linux kernel 5.4.

5.2.1 ZCU102 Bandwidth Assessment

The bandwidth assessment in Fig. 6 shows a peak read bandwidth of Bpeak−core,r =
4393 MB/s (prfm L1 ) and a peak write bandwidth Bpeak−core,w = of 8460 MB/s
(store). We also observe an undercounting of write operations in PMCs of about
3% (dotted lines). However, with an increment of 128 KiB, we observe a sustainable
bandwidth of 1027 MB/s for reading, 985 MB/s for writing and 483 MB/s for modify.
Because read and write bandwidths are within 5% difference, we assume a single
sustainable memory bandwidth value of Bsustainable ≈ 1000 MB/s (954 MiB/s) for
the ZCU as simplification and to improve readability. Then fractions of the bandwidth
then compute nicely to bandwidth values, e.g., 20% is 200 MB/s.

These results are in line with previously reported performance metrics of the same
platform (Schwaericke et al., 2021). We observe a slightly lower bandwidth on a second
ZCU102 board in our lab that is equipped with different DRAM (read 1015 MB/s,
write 935 MB/s, modify 478 MB/s, slow-down already at 64 KiB step size).

19



875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 64  128  256  512  1024  2048  4096  8192  16384  32768  65536  131072  262144

B
a
n

d
w

id
th

 o
v
e
r 

3
2

 M
iB

 b
lo

c
k
 [

M
B

/s
]

Increment in Bytes

load
ldnp

prfm L1
store
stnp

dc zva
mod

mod stnp

Fig. 6 Sustainable bandwidth on Xilinx ZCU102: Assessment of memory bandwidth over 16 MiB
block with different step sizes to trigger worst-case performance behaviour in the memory subsys-
tem. Lines represent the bandwidth observed by the core. Dotted lines track the PMCs relevant for
bandwidth regulation. Sec. 5.1 explains details.

5.2.2 ZCU102 MemPol Regulation

We measured the access time from both the APs and RPs to CoreSight registers.
On the ZCU102, we measured a mean overhead for reading resp. writing of 303 resp.
213 ns from the Cortex-A53 cores and of 274/216 ns from the R5 cores. While stressing
the memory subsystem in parallel to the tests, we observed that latencies on our
ZCU102 increase up to 1146/643 ns for access from the Cortex-A53 cores. This hints
to bottlenecks at the interconnect level between the A53 cores and the low-power
domain. Accessing the CoreSight registers from the R5 cores shows lower latencies, as
the transactions take a different path and stay in the SoC’s low-power domain. We
stressed the routers in the low-power domain by accessing I/O devices in the low-
power domain from the A53 cores in parallel, but this did not increase the latencies
for accesses from the R5 cores much.

Profiling of the MemPol regulation running on the first R5 core showed that the
execution of the control loop takes between 4.8 to 5.2 µs. Overall, we add a safety
margin to the observed values and set the period of the control loop to 6.25 µs to get
a nice factor for human readable timings.

5.2.3 ZCU102 Cost Model

In the cost model of the MemPol controller, the sustainable memory bandwidth of
Bsustainable ≈ 1000 MB/s this translates to 97.656 cachelines of 64 B per 6.25 µs
period with weight-factors αr = αw = 1 for both reading and writing, as read and
write performance are quite similar.10

10The implementation uses a factor of α = 1000 and a budget of 97656 cachelines per loop to compensate
any loss of precision in the decimal places.
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Based on the peak bandwidth, we assume an overshooting factor β =
max(Bpeak−core,∗)/Bsustainable = 8.46, or peaks of up to 826 cachelines in 6.25 µs.
Experiments with the benchmark from Sec. 5.1 show peak PMC values of 456 refills,
831 write-backs, and 831 for the sum of both counter values.

5.3 NXP i.MX8M

The NXP i.MX8M Quad (NXP, 2024a) is evaluated on the Coral Dev Board (Phan-
bell) by Google. It supports a single cluster of four Cortex-A53 cores running at
1.5 GHz, 32 KiB L1 instruction and data caches each, a shared 1 MiB L2 cache, and
1 GiB LPDDR4 memory. The real-time companion core is a Cortex-M4 with 256 KiB
TCM which is clocked at 200 MHz on the Coral Dev Board. We load the regulator
binary with the bootaux command of the U-Boot bootloader. We use the Mendel Eagle
distribution with Linux kernel 4.14.98.

To prevent side effects, we have to clear the HDBG bit in the SYS CTR CONTROL CNTCR

register to prevent the core timers to be halted when a core is halted (see Sec. 4.4).
Also, the UART reacts to the debug signals and must be properly configured (NXP,
2021).

5.3.1 i.MX8M Bandwidth Assessment
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Fig. 7 Sustainable bandwidth on NXP i.MX8M: Assessment of memory bandwidth over 16 MiB
block with different step sizes to trigger worst-case performance behaviour in the memory subsys-
tem. Lines represent the bandwidth observed by the core. Dotted lines track the PMCs relevant for
bandwidth regulation. Sec. 5.1 explains details.

Fig. 7 shows the bandwidth measurements on the i.MX8M. We observe a peak
read bandwidth of Bpeak−core,r = 3813 MB/s (prfm L1 ) and a peak write bandwidth
Bpeak−core,w = of 10235 MB/s (store). We already see the bandwidth dropping at an
increment of 32 KiB, with 976 MB/s for reading, 911 MB/s for writing and 462 MB/s
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when modifying cachelines. We again use a unified sustainable memory bandwidth
value of Bsustainable ≈ 924 MB/s (882 MiB/s) for the i.MX8M, even if the difference
between reading is about 7%. Like on the ZCU102, we observe an undercounting of
writes in PMCs of about 3%.

5.3.2 i.MX8M MemPol Regulation

We measured the access time to the CoreSight registers from the Cortex-M4 core in
a tight loop while the Cortex-A53 were active. Reading a CoreSight registers takes
between 47 and 57 cycles (235 ns to 285 ns), while writing takes 51 to 60 cycles (255 ns
to 300 ns) on the M4. Activity on the A53 cores did not further increase the latencies.
We measured a worst-case of 1371 cycles (6.855 µs) for the regulation loop of the
MemPol regulator. We add a safety margin and use a 10 µs period for the control loop.

5.3.3 i.MX8M Cost Model

On the the i.MX8M, the sustainable memory bandwidth of Bsustainable ≈ 924 MB/s
relates to 144.375 cachelines per 10 µs period, and we set the weight-factors αr =
αw = 1 for both reading and writing.

The overshooting factor of β = max(Bpeak−core,∗)/Bsustainable = 11.08 is higher
than on the ZCU102 due to the higher peak performance. We can expect peaks of up
to 1600 cachelines in 10 µs. Our experiments show peak PMC values of 709 refills,
1599 write-backs, and 1599 for the sum of both PMCs in practice.

5.4 NXP S32G2

The NXP S32G274 is designed for automotive purposes (NXP, 2024c). We evaluate
the SoC in revision 2.0 on a MicroSys S32G274AR2SBC2 evaluation board with 4 GiB
LPDDR4 RAM. The S32G2 provides two clusters of two Cortex-A53. This allows the
two cores of each cluster to run in a lock-step configuration. Each core has the usual
32 KiB L1 data and instruction caches. The two cluster have 512 KiB shared L2 cache
each. On the RP side, the S32G2 has six Cortex-M7 cores in dual lock-step, so the
software side sees three cores. The M7 cores have 64 KiB of TCM and also 32 KiB
L1 data and instruction caches. A Network-on-a-Chip (NoC) interconnect connects all
components on the SoC. The A53 cores run at 1 GHz, while the M7 cores use 400 MHz.
The manual mentions that the debug APB is clocked at 50 MHz (NXP, 2023).

We run the MemPol regulator on the first Cortex-M7 core. The regulator code is
kept in the internal SRAM at address 0x34100000, as the M7 core lacks a dedicated
TCM for instructions. We configure the instruction cache to speed up execution. The
regulator’s data is kept in the data TCM of the M7 core. We start the Cortex-M7
using the startm7 command from U-Boot. We further evaluate the S32G with Linux
kernel version 5.15.73 by the CPU vendor.

5.4.1 S32G2 Bandwidth Assessment

The S32G2 shows a different behavior for its memory bandwidth in Fig. 8 than the
ZCU102 or the i.MX8M. From a peak read bandwidth of Bpeak−core,r = 2000 MB/s
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Fig. 8 Sustainable bandwidth on NXP S32G2: Assessment of memory bandwidth over 16 MiB block
with different step sizes to trigger worst-case performance behaviour in the memory subsystem. Lines
represent the bandwidth observed by the core. Dotted lines track the PMCs relevant for bandwidth
regulation. Sec. 5.1 explains details.

(prfm L1 ) and a peak write bandwidth Bpeak−core,w = of 4420 MB/s (store), we
quickly drop off to the low bandwidth plateau at a step size of 4 KiB. The then observe
Bsustainable,r = 956 MiB/s for reading, Bsustainable,w = 679 MiB/s for writing, and
394 MiB/s when changing cachelines. This makes it hard to assign a single sustain-
able bandwidth value. Instead, we assign the two values for reading and writing as
sustainable bandwidth (see Sec. 5.4.3).

5.4.2 S32G2 MemPol Regulation

Accessing the CoreSight registers on the S32G2 from the first main Cortex-A53 core
takes 450 resp. 257 ns for reading resp. writing. The Cortex-M7 core can read registers
faster at 420 ns, but writing takes the same time. The timing on the Cortex-M7 core
is 420 resp. 257 ns for reading resp. writing. For the regulation loop of the MemPol
regulator, we observed a worst-case execution time of 2987 cycles (7.468 µs) during
our tests. Like on the i.MX8M, we again use a 10 µs period for MemPol ’s control loop.

The S32G2 provides an alternative mechanism to obtain the relevant performance
counters. The Cortex-A53 core exports some of its internal signals that feed the
PMCs also on the PMUEVENT bus, including the ones related to L2 cache activity.
This allows external hardware to monitor the core from the outside without using
the CoreSight registers (ARM, 2018a). The S32G2 implements one PMUEVENT bus
observer unit for each A53 core with dedicated 8-bit wide counters for each signal on
the PMUEVENT bus (NXP, 2023). We measured that these counters can be read in
293 ns from the Cortex-M7 cores. However, we cannot reliably use these counters for
regulation, as the peak memory in a regulation period would overflow the counters.11

11The PMUEVENT bus observer unit is primarily intended to count cache, TLB and bus error events.
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5.4.3 S32G2 Cost Model

For the cost model on the S32G2, we cannot use a single metric for the sustainable
memory bandwidth. From the measured metrics of Bsustainable,r = 956 MiB/s for
reading and Bsustainable,w = 679 MiB/s for writing, we can derive different weight-
factors of αr = 1 for reading and αw = 1.408 for writing to account for the differences.
This means that the value of the PMC monitoring the L2 data cache write-back (0x18)
gets multiplied by 1.408 by the regulator, and Bsustainable = 956 MiB/s is reduced to
a single value.12

However, this now inflates the overshooting of the peak write bandwidth by the
factor αw as well. Our overshooting factor becomes β = αwBpeak−core,w/Bsustainable =
6.51, or peaks of up to 972 weighted or 690 unweighted cachelines in 10 µs. In our
experiments, we observed peak raw (unweighted) PMC values of 367 for L2 cache
refills and 834 for write-backs and the sum of both counter values.

5.5 Further Platforms

We additionally evaluated the feasibility of MemPol on further platforms.

Raspberry Pi 4. On the Raspberry Pi 4 (Raspberry Pi Ltd, 2024), we benchmarked
that the reading resp. writing of CoreSight registers from its Cortex-A72 cores takes
135 resp. 122 ns. We are also able to halting and resuming of cores through the debug
interface. A MemPol regulation would be possible on the Raspberry Pi 4 (probably
even with a fast regulation cycle of 2.5 µs as the numbers suggest), but we skipped
further evaluation of this platform as the regulation would have to run on one of the
system’s four Cortex-A72 cores.

NXP LX2160A. We run the same experiment on the NXP LX2160A (NXP, 2024b)
and observe 374 resp. 366 ns for CoreSight accesses from the Cortex-A72 cores.
Also, halting and resuming of cores through the CTI works as expected. We also
did not further consider this platform for evaluation for the same reason as for the
Raspberry Pi 4.

NVIDIA Jetson AGX Orin. The same experiment to access the other cores’ Core-
Sight registers failed on the NVIDIA Jetson AGX Orin development kit with its twelve
Cortex-A78 cores (NVIDIA, 2024a). The platform additionally includes a Cortex-R5
that could be used to host the regulation. Here, the firmware did not enable the
platform’s debug authentication signals (DBGEN, NIDEN), thus making an evaluation
impossible (see Sec. 4.4).

6 Evaluation

We perform most of the evaluation of MemPol on the ZCU102 platform. Here, the
regulator runs bare-metal on the R5 core and is independent of the operating system
on the application cores. It is loaded during system startup as part of the boot loader
configuration, and it remains inactive until the benchmarks configure its parameters

12In the implementation, we set αr = 1000 and αw = 1408 to prevent the need for floating-point
arithmetic.

24



1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

and start it. The regulator polls PMU counters every 6.25 µs and using a default
sliding window size w of 8 entries (50 µs) (see Sec. 5.2).

We evaluate the details of MemPol ’s regulation with a set of experiments on a
lightweight RTOS, which allows full control of cores activities and of the physical mem-
ory layout. We have implemented MemGuard on the RTOS for low-level comparisons
with MemPol . Furthermore, we perform a comparison of MemPol and MemGuard
from Bechtel and Yun (2019) on Linux using the San Diego Vision Benchmark Suite
(SD-VBS) (Venkata et al., 2009). In the SD-VBS, we hook into photonStartTiming()

and photonEndTiming() to measure execution times and to precisely coordinate the
start of the regulation. The plots in this section show the aggregated core’s L2 cache
activity over time as memory accesses (number of cachelines) and as the percentage
of the sustainable bandwidth. Averages over t-100 µs to t+100 µs are shown as thick
lines.13

6.1 Per-Core Regulation

We first present experiments of the per-core regulation based on both read and write
access measurements. The test applications generate different memory access patterns.
The patterns differ in the access type (loads, stores, or modifications of full cachelines)
and in the stress they cause in the memory controller (worst-case accesses or linear
accesses).

Fig. 3 shows a worst-case reader regulated by both MemGuard and MemPol .
In both cases, we can observe the number of L2 cache refills matches the worst-
case of approx. 97 cachelines per 6.25 µs. The worst-case readers use PRFM PLDL1KEEP

instructions to prefetch data to the L1 cache instead of using normal loads. This
removes any dependencies in the core’s pipeline to wait for the loaded data.

Focusing on MemPol only, Fig. 9 shows different memory access patterns changing
every 250 µs on a core regulated at 50% of the sustainable bandwidth. Starting from
the left, the application first performs worst-case loads (each load causes a bank switch)
for 250 µs. In the subsequent ranges of 250 µs each, the test performs 2, 4, and 8
memory accesses to the same bank before switching bank. In the next four ranges,
the application repeats the same patterns, but with stores to whole cachelines instead
of loads, thus ensuring that cachelines bypass the cache (write-through). Finally, the
application does read-modify-write accesses to cachelines. The number of memory
accesses is the same in each test, but the latencies at the memory controller differ.
Fig. 9 shows three main trends. (1) Linear memory accesses are handled faster than
worst-case ones. (2) As expected, higher overshooting corresponds to longer idle times.
(3) Buffering of write transactions causes more frequent and higher spikes than reads.
We also note that a variation of the worst-case load pattern starting at 250 µs generates
higher overshooting than peak accesses at 750 µs.

Fig. 10 shows the behavior of MemPol in simultaneously enforcing different band-
width levels. Here, cores c0 and c1 at 10% (20%) levels perform worst-case reads
(writes—to whole cachelines), while cores c2 and c3 at 30% (40%) levels perform lin-
ear reads (writes). Overall, the cores meet their average bandwidth targets, despite

13A moving average of 200 µs proved to be a good trade-off to show the regulation trends even in case
of overshooting.
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Fig. 10 MemPol regulates cores at different bandwidth levels: c0 worst-case reader at 10%, c1
worst-case writer at 20%, c2 peak reader at 30%, c3 peak writer at 40%. Polling 6.25 µs. 50 µs sliding
window size. 200 µs averages.

the visible overshooting of cores c2 and c3. Note the quite regular distance between
spikes for the individual cores, and that the height of the spikes relates to the memory
access pattern.
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Fig. 11 200 µs averages of PMCs of a run of tracking in VGA resolution. The graphs show (a) L2
refills, (b) L2 write-backs, and (c) combined L2 refills and write-backs. MemGuard regulates based
on (a), MemPol based on (c).

6.2 Regulation based on L2 Data Cache Refill and Write-Back

As mentioned in Sec. 2, the single monitoring dimension used by MemGuard may
lead to memory under-utilization and may not correctly account for e.g., write-heavy
behaviors. By monitoring multiple dimensions at once, MemPol can instead overcome
these limitations as shown in this experiment that measures the impact of L2 cache
write-backs on the regulation model (Sec. 3.1). For this, we record the PMU counters
for a full unregulated run of the tracking SD-VBS benchmark. Fig. 11 shows the sam-
pled L2 cache refill and write-back counters. After initial preparation (up to approx.
180 ms), the benchmark starts to track objects in four consecutive images for about
about 100 ms each.

The bandwidth reported by the L2 cache refill counter (Fig. 11 (a)) shows that the
bandwidth stays mostly below the 25% mark during the execution, with one larger
and four minor spikes beyond the 50% mark. This is the data that MemGuard uses
for regulation. In contrast, when also monitoring the L2 cache write-back counter,
Fig. 11 (b) shows that the benchmark typically consumes between 10 to 15% of the
bandwidth, but causes many frequent write-peaks beyond the 200% mark. Fig. 11 (c)
shows the combined L2 cache counters that are used by MemPol -regulation following
the cost model in Sec. 3.1. We see that the overall bandwidth demand accumulates
and sometimes exceeds the 250% mark.

Compared to MemGuard , MemPol can precisely track the write behavior and
correctly account for the previous state of the L2 cache. Instead, to correctly regulate,
MemGuard must make pessimistic assumptions on the write behavior, or must use
statistical information obtained by prior profiling (Sohal et al., 2020).
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Fig. 12 Three runs of tracking in VGA resolution regulated at 20% sustainable memory bandwidth.
The graphs detail the first write peak (Fig. 11 at around 45 ms) for different sliding window sizes of
50 µs, 100 µs and 200 µs. Larger sliding window sizes allow the benchmark to reach the peak earlier,
i.e., at around 60 ms (200 µs) instead of 63.8 ms or 65.5 ms (50 µs).

Fig. 12 compares three regulated runs of the tracking SD-VBS benchmark at 20%
sustainable bandwidth with different settings for w focusing on the first write peak
at around 45 ms in the unregulated run Fig. 11. In the experiment, smaller w causes
larger slowdown (i.e., the spikes appear later) than bigger w values. For example,
at w = 8 (50 µs), the execution is slowed down for up to 5.5 ms. This shows that
certain workloads are sensitive to the sliding window size and require profiling to
find acceptable settings. Obviously, for small sliding windows the regulation is less
tolerant to periodically repeating spikes, as the margins to compensate for the spikes
in non-memory-intensive phases reduce.

6.4 Redistribution of Memory Bandwidth by Global Regulator

Fig. 13 and 14 show the redistribution of unused memory bandwidth of MemPol ’s
global regulator. Here, core c0 (regulated at 50%) alternates between memory access
and idle phases, while core c1 (regulated at 25%) always performs memory accesses.
When the global regulation is disabled (Fig. 13), the overall bandwidth drops to 25%
when c0 is idle. Instead, when the global regulation is enabled (Fig. 14), c1 is allowed to
use any remaining bandwidth up to the global configured limit of 75%. In both cases,
we can observe a slight overshooting of the average global bandwidth when c0 returns
from being idle, as the local regulator for c0 lets the core consume the bandwidth up
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Fig. 13 MemPol bandwidth redistribution: global regulation disabled. Core c0 is regulated at 50%
bandwidth and alternates memory access and idle phases every 750 µs. Core c1 is regulated at 25%
bandwidth and accesses memory all the time. Both cores perform worst-case reading. The global
regulator is disabled and unused bandwidth is not redistributed. Polling at 6.25 µs. 50 µs sliding
window size. 200 µs averages.

to its budget. The global regulator cannot prevent this, as it can only override the halt
decision of the local per-core regulator as described in Sec. 3.7.

6.5 Comparing Regulation of MemPol and MemGuard

We compare the regulation ofMemPol andMemGuard using SD-VBS. We leverage the
framework in Nicolella et al. (2022) to run automated tests to measure the execution
time of all benchmarks under regulation and co-scheduled with other benchmarks,
and we compare the results to unregulated executions in isolation. After several initial
runs, we observed that disparity, mser, sift, stitch, and tracking provide the most
noteworthy result for this experiment. We use sliding window sizes of 50 µs, 100 µs,
and 200 µs for MemPol , and compare them to replenishment periods of 50 µs, 100 µs,
200 µs, and 1 ms for MemGuard .

In our first set of experiments (Fig. 15), we evaluate the regulated benchmarks at
20%, 30%, and 40% of the sustainable bandwidth, which are typical settings for one
core in a four core setup. For comparable results between MemPol and MemGuard ,
we constraint MemPol to use only the L2 cache refill counter instead of the more pre-
cise combined model (Sec. 6.2). Also, MemPol ’s global regulation is disabled. We run
the benchmarks in isolation (first horizontal group in Fig. 15) and together with Isol-
Bench on another core (60% bandwidth) or on three other cores (3 x 20% bandwidth),
and we measure the slowdown ratio. As expected, overheads in execution time com-
pared to the unregulated baseline increase for smaller regulation periods and lower
bandwidths. In both MemPol and MemGuard setups, mser is the most affected one by
the parallel execution with IsolBench, while, in general, the number of co-runners has
no significant impact on the regulation. Overall, even when using only the L2 cache
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Fig. 14 MemPol bandwidth redistribution: global regulation enabled. Core c0 is regulated at 50%
bandwidth and alternates memory access and idle phases every 750 µs. Core c1 is regulated at 25%
bandwidth and accesses memory all the time. Both cores perform worst-case reading. The global
regulator is enabled and redistributes unused bandwidth from c0 to c1 while c0 is idle, but keeps the
overall bandwidth at 75%, which the sum of both cores’ configured bandwidth. Polling at 6.25 µs.
50 µs sliding window size. 200 µs averages.

refill counter, MemPol regulates comparably to MemGuard , with MemGuard showing
higher overheads at smaller regulation periods due to the increased interrupt load.

Table 1 SD-VBS read and write memory bandwidth settings for MemGuard

average L2 PMCs per run 200 MB/s 300 MB/s 400 MB/s

Benchmark refills write-backs ratio read write read write read write

disparity 11557693 7454823 1.550 121.6 78.4 182.4 117.6 243.2 156.8
mser 1697628 528748 3.211 152.5 47.5 228.8 71.2 305.0 95.0
sift 4447803 3771100 1.179 108.2 91.8 162.4 137.6 216.5 183.5
stitch 870178 871010 0.999 100.0 100.0 149.9 150.1 199.9 200.1
tracking 2238342 2318700 0.965 98.2 101.8 147.4 152.6 196.5 203.5

In our second set of experiments we compare MemPol to MemGuard with write
regulation enabled. To setup MemGuard bandwidth levels for its write regulation cor-
rectly, we first measured the ratio of L2 refills and L2 write-backs for each SD-VBS
benchmark in isolation. We ran each benchmark for 50 iterations in VGA resolution
and obtained the L2 refill and write-back PMCs before and after the runs. Table 1
shows that the benchmarks fluctuate between 3.2:1 (mser) and 1:1.04 (disparity) in
their read:write ratio. With these insights, we calculate benchmark-specific read and
write bandwidth settings for MemGuard . Table 1 shows the bandwidth values for a
target bandwidth of 20%, 30% and 40% of the sustainable bandwidth. ForMemPol , we
simply configure the combined bandwidth value (Sec. 6.2).MemPol ’s global regulation
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Fig. 15 Slowdown ratio in execution time of SD-VBS regulated at 20%, 30% or 40% sustainable
bandwidth with read regulation compared to unregulated execution (slowdown ratio 1.0) as baseline.
The slowdown is caused by memory bandwidth regulation (MemPol , MemGuard) and by implemen-
tation overheads (interrupt handling in MemGuard , see Sec. 2.1). The colored bars represent the
relative mean overhead of 10 runs. The small vertical black lines on top of the bars show min/max.
The benchmarks run alone or in parallel with IsolBench on one or three other cores. We evaluate
MemPol and MemGuard at different sliding window sizes / regulation periods. MemPol regulates
using L2 cache refill counters only, like MemGuard . MemPol ’s global regulation is turned off.

0

1

2

3

4

5

6

7

Iso
la
tio

n

disp/vga
20 %

disp/vga
30 %

disp/vga
40 %

mser/vga
20 %

mser/vga
30 %

mser/vga
40 %

sift/vga
20 %

sift/vga
30 %

sift/vga
40 %

stitch/vga
20 %

stitch/vga
30 %

stitch/vga
40 %

track/vga
20 %

track/vga
30 %

track/vga
40 %

Sl
ow

do
wn

 (R
at
io
)

MemPol 50 µs
MemPol 100 µs
MemPol 200 µs
MemGuard 50 µs
MemGuard 100 µs
MemGuard 200 µs
MemGuard 1000 µs

Fig. 16 Slowdown ratio in execution time of SD-VBS regulated at 20%, 30% or 40% sustainable
bandwidth with read/write regulation compared to unregulated execution (slowdown ratio 1.0) as
baseline. The slowdown is caused by memory bandwidth regulation (MemPol , MemGuard) and by
implementation overheads (interrupt handling in MemGuard , see Sec. 2.1). The colored bars represent
the relative mean overhead of 10 runs. The small vertical black lines on top of the bars show min/max.
The benchmarks run in isolation, like in the first row in Fig. 15. We evaluate MemPol and MemGuard
at different sliding window sizes / regulation periods. MemPol regulates using both L2 cache refill
and write-back counters, while MemGuard uses the bandwidth settings in Table 1. MemPol ’s global
regulation is turned off.

is again disabled. Fig.16 shows the comparison between MemPol and MemGuard for a
run of each benchmark at the given bandwidth levels on the first core of an otherwise
idle system. Compared to the similar run using just read-regulation in the top hori-
zontal group in Fig. 15, the read-write-based regulation causes a higher slowdown for
tracking, as the regulation has now to account for the write-spikes shown in Fig. 11.
This affects both MemPol and MemGuard . disparity and mser follow this trend, but
are less affected. We can also observe that the selected approach of using the ratio
between L2 refill and write-back PMCs to derive the regulation parameters for Mem-
Guard does not lead to similar outcomes as for MemPol . Especially disparity, mser
and tracking show higher overheads for MemGuard beyond what the read regulation
in Fig. 15 shows. This is because the ratio is not homogeneous during the execution of
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the benchmark, as especially the higher slowdowns during shorter regulation periods
show. Lastly, the measured bandwidth ratios in Table 1 are no longer applicable when
the system is under load and the benchmarks cannot exclusively monopolize the L2
cache. This also shows that more sophisticated profiling approaches are needed to find
the right regulation parameters for a write-back-based regulation for MemGuard .
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Fig. 17 Slowdown ratio in execution time of SD-VBS regulated at 20% and 30% sustainable band-
width compared to unregulated execution (slowdown ratio 1.0) as baseline. The slowdown is caused
by memory bandwidth regulation (MemPol , MemGuard) and by implementation overheads (inter-
rupt handling in MemGuard , see Sec. 2.1). The colored bars represent the relative mean overhead
of 10 runs. The small vertical black lines on top of the bars show min/max. The benchmarks run in
parallel with another instance of a benchmark with the same bandwidth settings on a second core.
We evaluate MemPol and MemGuard at different sliding window sizes / regulation periods. We also
include results with MemPol ’s global regulation enabled at 40% resp. 60% global bandwidth. Mem-
Pol regulates using L2 cache refill counters only, like MemGuard .

In our third set of experiments (Fig. 17), we evaluate the benchmarks executing in
parallel on two cores with an equal regulation of 20% and 30% (Fig. 15 shows that 20%
and 30% are the most interesting bandwidth settings). Here we also enable MemPol ’s
global regulation14 and use 40% resp. 60% for the global bandwidth. Similarly to
Fig. 15, for a fair comparison, we restrict MemPol to only use the L2 cache refill
counter for regulation. From the benchmarks, we select disparity, sift, and tracking

as co-runners, as they run for a longer time. Similarly to Fig. 15, the regulations
of MemPol and MemGuard are in general comparable. The global regulation never
causes higher overheads, but its benefits are strongly dependent on the benchmark
combinations (disparity and mser benefit the most). Interestingly, MemPol ’s global
regulation helps disparity when run in parallel to tracking, but not vice versa (bottom
left vs. top right), because tracking is compute-bound (see Fig. 12 (a)), but disparity
is memory-bound.

6.6 Discussion

The evaluation section has shown the potential of the fine-grained regulation, flexibil-
ity, and low-overheads enabled by MemPol . Additionally, even when considering only

14It does not make sense to evaluate bandwidth redistribution with memory hogs like IsolBench.
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one regulation dimension, MemPol achieves comparable or better results than Mem-
Guard . While MemGuard shows no control delays and halts cores when they reach or
exceed their bandwidth limits, MemPol ’s behavior is driven by both the polling fre-
quency in its control loop and delays in halting via the debug interface. This leads to
overshooting, which is amplified by the difference between sustainable bandwidth tar-
gets (needed by regulation in real-time systems), and the peak bandwidth the memory
controller can deliver in best-case conditions. On the other hand, MemPol can con-
sider a wider range of metrics for regulation (compared to just a single PMU counter in
MemGuard ’s case) and enables microsecond-scale regulation that also help to mitigate
the side effects of overshooting and to bound blocking times of the cores.

Although MemPol is a good starting point for novel regulation schemes based on
polling, our investigation have shown that non-polling-based regulators (e.g., Mem-
Guard) would benefit from a smarter PMU architectures that allow aggregating the
sum of multiple PMU counters for regulation. However, such an improved PMU would
still be limited, as it does not include data of other IP blocks such as the memory
controller. Using polling, Saeed et al. (2022) shows that the aggregation of data from
multiple sources is necessary to reduce the heavy pessimism in memory regulation
caused by the spread in real bandwidth behavior. In any case, it would be beneficial
for all types of regulators if hardware vendors provide PMU counters with fast access
for outside agents at any level in the memory hierarchy and disclose information on
how to use them.

With MemPol , we show a regulation that uses multiple PMU counters (read and
write regulation) and even considers combined results of all cores for its global regula-
tion. Furthermore, instead of relying on the pessimistic sustainable bandwidth metric,
MemPol ’s bandwidth redistribution of the global regulation can easily be extended to
sample utilization of the memory controller if available on the platform (e.g., Saeed
et al. (2022)). Note that MemGuard also supports bandwidth redistribution, but its
bandwidth reclaiming mechanism redistributes future budgets that it predicts will
remain unused based on the history of per-core memory consumption. The approach
offers no guarantees that a donating core can reclaim its budget when needed (Yun
et al., 2016). Compared to MemGuard with typical regulation periods of 1 ms, the
50 µs setting for MemPol may lead to a pessimistic control behavior for programs with
memory-intensive phases that exceed the configured budgets. On the other hand, a
low setting for w reduces the window for temporal interference with other bus mas-
ters. This is a trade-off that must be considered in the overall design, and requires
profiling of the regulated applications.

We currently implement MemPol in software on one of the smaller real-time cores.
However, the implementation is simple enough to be realized in hardware or in an
FPGA. Compared to less flexible regulation approaches, (e.g., Arm CCI-400 (ARM,
2016b), which uses counters to bound bursts), MemPol requires storage for the exe-
cution history in the last w polling periods. In order to implement regulation at OS
task level, window sizes and budgets on each core should change dynamically. The cur-
rent implementation of the regulator supports such dynamism by considering budget
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updates in the next cycle of the control loop. However, penalties due to overshoot-
ing in previous cycles cannot be eliminated. In this work, we have not evaluated the
impact of dynamically changing the sliding window size w at run-time.

Currently, MemPol throttles cores via debug interfaces. Arm documents the
approach as a valid solution for self-hosted debugging in the A53 and A72 manuals
(ARM, 2018a, 2016c). In our experiments, we did not observe any problems with, e.g.,
atomic synchronization or idle management of the cores. However, it is worth noting
that debug interfaces and performance counters, in general, seem to be second class
citizens w.r.t. safety features. For instance, the debug APB interface to CoreSight reg-
isters lacks ECC on the R5 cores (ARM, 2011), and PMCs are underspecified and
may exhibit inaccuracies (Mezzetti et al., 2018), as evidenced by the slight under-
counting in Sec. 5.1, or even presents bugs (ARM, 2019). Two related questions are
whether the right combination of PMU counters will be available on newer Arm core
generations, considering that Arm introduces an L3 cache as LLC from the Cortex-
A75 onwards (ARM, 2018b), and if the access to the PMCs via the relatively slow
CoreSight interface scales beyond a handful of cores. We defer the evaluation of both
questions to future work.

Another limitation is that the debug interfaces provide no simple way for operating
systems to disable throttling in critical sections. An alternative to the debug interface
to throttle cores would be using regulation interrupts and poll—from a light-weight
interrupt handler—the end of the throttling phase in a status register of the regulator.
Another possibility is to combine both mechanisms, e.g., use the debug interface to
throttle cores for short blocking times and raise interrupts if longer blocking times
are expected. This would allow an OS to handle interrupts during longer throttling
phases, as incoming interrupts are queued in the interrupt controller when a core is
halted in debug state and delivered when the core is released again. On Arm, the
often unused FIQ interrupt would be a good candidate for interrupt-based throttling.
While the ZCU102 platform provides means to send interrupts to the application
cores from the R5 cores, we did not further evaluate this approach, as even a fast
interrupt handler requires support from the operating system and causes memory
accesses during execution. We leave as future work the evaluation of interrupt-based
throttling and the fine-grained regulation at OS task-level. Finally, note that the lack
of control mechanisms for an OS to disable throttling during critical sections and the
inability to handle OS-level interrupts during throttling are shared by all MemGuard
implementations at hypervisor level that we are aware of.

7 Related Work

The problem of regulating memory interference on complex MPSoC platforms has
received considerable attention and several software and hardware approaches have
been proposed. While software-based approaches to memory regulation benefit from
greater flexibility and are widely applicable to existing commercial-off-the-shelf
(COTS) platforms, hardware-based approaches are capable of higher control resolu-
tion and—given their vantage point view of the system—can precisely monitor and
regulate memory traffic.
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On the software side, the initial work on PMC-based regulation (MemGuard) (Yun
et al., 2013; Yun et al., 2016) has been followed by multiple studies (Modica et al., 2018;
Dagieu et al., 2016; Martins et al., 2020), including implementations of MemGuard
also at the hypervisor level to prevent modifications in the host OS, thus allowing
for improved applicability. Notably, Bechtel and Yun (2019) extended the MemGuard
implementation for Linux15 to support separate regulation on read (cache-refills) or
write (write backs) memory traffic for each core. The work of Bechtel and Yun (2023)
also extends MemGuard to regulate LLC bandwidth offering protection against Cache
Bank-Aware Denial-of-Service Attacks.

Performance counters can only provide an approximation of the load effectively
generated on the interconnect and on the DRAM memory controller and the dis-
crepancies between memory traffic generated by the CPUs and the utilization of the
memory DRAM controller have been outlined by Sohal et al. (2020) and Saeed et al.
(2022). In these works, actual memory utilization is determined via performance coun-
ters exposed by the memory-controller. Unfortunately, the internals of the memory
controllers are rarely made available by hardware vendors (Rehm et al., 2021), and
only a limited subset of MPSoCs (mostly from NXP, e.g., (NXP, 2024c)) exposes some
PMCs for the memory controller.

The work by Saeed et al. (2022) shares similarities with ours as the memory uti-
lization is periodically sampled. Nonetheless, standard MemGuard ’s interrupts—and
associated overheads—are used to regulate cores and to trigger the sampling. The
approach proposed by Saeed et al. (2023) also periodically samples PMCs to build
distribution-driven memory regulation.

In addition to PMCs, modern MPSoCs provide other QoS or monitoring fea-
tures (e.g., (ARM, 2014)). The work by Garcia-Esteban et al. (2023) have provided
an in-depth analysis of ZCU102 QoS features and the works of Sohal et al. (2020);
Serrano-Cases et al. (2021); Houdek et al. (2017); Zini et al. (2022) and Garcia-Esteban
et al. (2023) have exploited such primitives to implement bandwidth regulation.
Although effective, integrated platform monitors and regulators, e.g., ARM (2016b),
only offer a pre-defined set of regulation possibilities, and—since they monitor at
the platform interconnect level—make it complex to attribute monitored traffic
to specific cores (Sohal et al., 2020). In parallel to PMC-based regulation, other
approaches (Agrawal et al., 2017; Flodin et al., 2014) base their regulation strategy
on worst-case memory budget estimations derived with offline analysis of statically
known workloads.

On the hardware side, to enable higher monitoring resolution, the works of Zhou
and Wentzlaff (2016) and Farshchi et al. (2020) develop custom hardware compo-
nents to implement bandwidth regulation directly at hardware level, while Cardona
et al. (2019) implements an FPGA module to monitor and regulate different types
of requests simultaneously. This proposal was also deployed on a prototype RISC-
V design (Wessman et al., 2021). Adaptations for the memory controller have been
proposed by Mirosanlou et al. (2020); Hassan et al. (2017); Valsan and Yun (2015);
Akesson et al. (2007) and Fernandez-De-Lecea et al. (2023) to reduce the worst-case
latency of memory requests under multicore contention. Time Division Multiplexing

15https://github.com/mbechtel2/memguard.
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hardware implementations have also been proposed by Hebbache et al. (2018); Jun
et al. (2007); Li et al. (2016) and Kostrzewa et al. (2016) to improve predictability
of the memory interconnect level. On MPSoCs (e.g., (Xilinx, 2024b)) that feature
an on-chip programmable logic, Hoornaert et al. (2021) proposed an architecture to
schedule individual memory transactions by redirecting CPU memory traffic through
the FPGA, while an FPGA-based closed-loop controller is proposed by Freitag and
Uhrig (2018).

Architecture-level features such as Arm’s MPAM (ARM, 2022a) or Intel’s
RDT (Intel, 2024) aim to deliver improved (QoS) control over the memory subsys-
tem. Real-time characteristics of RDT are analyzed by Sohal et al. (2022) and a
theoretical analysis of MPAM characteristics is presented by Zini et al. (2023). Unfor-
tunately, the availability of such architectural-level features on current systems is still
very limited. Furthermore, in the case of Arm MPAM, all its control interfaces are
defined as optional and it is therefore unclear, which controls will be available in actual
implementations.

In addition to bandwidth regulation, cache partitioning techniques (Mancuso et al.,
2013; Xilinx, 2020; Kloda et al., 2019) and bank-level partitioning (Yun et al., 2014)
have been also successfully used to mitigate core-interference at cache and DRAM
level respectively. Notably, hardware support for cache partitioning is offered on recent
MPSoC such as NVIDIA’s Jetson AGX Orin (NVIDIA, 2024a) as part of Arm’s
DynamIQ (ARM, 2022b).

An empirical characterization of memory interference for different NVIDIA-
based boards is presented by Capodieci et al. (2020) and Cavicchioli et al. (2017),
while Brilli et al. (2022) investigates memory interference for FPGA-based heteroge-
neous MPSoCs.

8 Conclusion

We presented MemPol , a novel approach for bandwidth regulation of application cores
in today’s MPSoCs. MemPol enables low-overhead regulation by polling PMU coun-
ters from an external processing unit—such as the R5 core on the Xilinx UltraScale+
ZCU102, the M4 core on the NXP i.MX8M or the M7 core on the NXP S32G2—
throttles cores using on-chip debug facilities, and uses an on-off controller design with
a sliding window technique to control burstiness. MemPol can regulate based on the
simultaneous contribution of multiple PMU counters and provides a combination of
per-core regulation and global regulation of all cores that allows redistributing unused
bandwidth between cores, while keeping the overall memory bandwidth below a given
global threshold.

Compared to state-of-the-art PMC-based regulations (e.g., MemGuard), MemPol :
(1) has a more accurate cost model that considers multiple PMU counter for regula-
tion, (2) does not generate timer or PMU interrupt overheads for application cores,
and (3) employs a fine-grained microsecond-scale bandwidth regulation allows bet-
ter cooperation with hardware-based QoS schemes, e.g., in the Arm CCI-400 (ARM,
2016b), and prevents starvation of other bus-masters.
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The shown implementation focuses on per-core regulation, similar to MemGuard
implementations found in hypervisors, but can be extended towards regulation at task
level as well by including interrupt-based notification to the OS to enforce throttling.
We leave an implementation of this for future work.

The presented regulation mechanism is challenging in multiple ways. An on-off-
based controller design has to cope with overshooting of memory budgets, delays in
the control paths, and unknown behaviors of applications’ memory access patterns at
a microsecond scale. However, we see this work as a starting point for further research
in regulation mechanisms from outside the cores.
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