
A Containerized Microservice Architecture for a ROS 2 Autonomous
Driving Software: An End-to-End Latency Evaluation

Tobias Betz, Long Wen, Fengjunjie Pan, Gemb Kaljavesi, Alexander Zuepke, Andrea Bastoni,
Marco Caccamo, Alois Knoll, Johannes Betz

Technical University of Munich, Germany

Abstract—The automotive industry is transitioning from tra-
ditional ECU-based systems to software-defined vehicles. A
central role of this revolution is played by containers, lightweight
virtualization technologies that enable the flexible consolidation of
complex software applications on a common hardware platform.
Despite their widespread adoption, the impact of containerization
on fundamental real-time metrics such as end-to-end latency,
communication jitter, as well as memory and CPU utilization has
remained virtually unexplored. This paper presents a microservice
architecture for a real-world autonomous driving application
where containers isolate each service. Our comprehensive evalua-
tion shows the benefits in terms of end-to-end latency of such a
solution even over standard bare-Linux deployments. Specifically,
in the case of the presented microservice architecture, the mean
end-to-end latency can be improved by 5-8%. Also, the maximum
latencies were significantly reduced using container deployment.

Index Terms—Software-Defined Vehicle, Autonomous Driving,
Containerization, End-to-End Latency, Robot Operating System 2

I. INTRODUCTION

The automotive market is shifting towards software-defined
vehicles (SDV), enabling a more software-centric automotive
ecosystem. For example, the open-source consortium SOAFEE
[1], [2] specifically targets SDV and brings together OEMs,
Tier 1s, and chip manufacturers to work on the challenges. The
E/E architecture of SDVs is based on a central computing unit
in which a powerful high-performance computer manages and
coordinates diverse functionalities. These functions encompass
processing of sensor data, operation of infotainment systems,
advanced driver assistance systems, and communication with
external systems. This enables the separation of software
from hardware functionality to achieve greater modularity
and scalability. Lightweight virtualization techniques such
as containerization enable efficient resource utilization and
isolation of software components. This design philosophy
empowers applications and services to operate independently
within their dedicated virtual environments. When employing
virtualization technologies in SDVs, stringent real-time criteria
such as latencies and deadlines must be met. This concern
becomes particularly important in autonomous vehicles, where
the timely processing of sensor data within a predefined
time window is critical for enabling prompt decision-making
and control. Typically, end-to-end latencies of 100ms are
considered acceptable, wherein the sensor data must be swiftly
processed, and the resulting output variables must be made
available from the vehicle’s trajectory controller [3]. Therefore,
the end-to-end latency directly impacts the vehicle’s ability to
navigate and respond to dynamic road conditions in a safe and

Bare-Metal Single-Container Multi-Container

Planning

Fig. 1: Considered software deployments: bare-metal (no
containers), one container, isolation via dedicated containers.

reliable manner. Failure to meet these real-time requirements
could lead to performance degradation and an increased risk of
accidents [4]. In the context of software-defined autonomous
driving architectures, practitioners have been experimenting
with frameworks that simplify the difficult tasks of configuring,
tuning, and optimizing the complex chains of architectural
interdependencies. In particular, Autoware [5] and the Robot
Operating System (ROS) 2 [6] are among the most widely
used frameworks.
This paper introduces a microservice architecture—developed

and applied to the research vehicle EDGAR [7]—that is
explicitly designed for Autoware, an open-source autonomous
driving software built on ROS 2. Since the impact of lightweight
virtualization technologies on the latency of complex software
has—to our knowledge—not yet been considered, this paper
investigates the impact of containerization on the end-to-end
latency in autonomous driving systems. Specifically, we focus
on the end-to-end latency of a real-world autonomous driving
architecture based on Autoware. We deploy the architecture
on two different platforms (x86 and aarch64) using multiple
configurations corresponding to an increasing level of container-
based isolation (see Fig. 1). Using standard practice in industry
[8], we use the container orchestration tool k3s [9] and Docker
[10] to manage the functional dependencies among software
packages and containers. Overall, the paper makes the following
contributions:

• We present the structure and building process of a
microservice architecture for autonomous driving software
serving as a testbed for future work.

• We perform a comprehensive analysis of the impact
of containerization using both specific benchmarks and
direct measures on increasingly isolated microservice
configurations.

• We quantitatively evaluate multiple real-time metrics,
including end-to-end latency, jitter, system CPU and
memory utilization.



Contrary to the common belief, our results show that con-
tainers can achieve lower end-to-end latency and better system
utilization than bare Linux configurations. This underlines the
challenge of finding the best-suited configuration options in very
complex system scenarios and shows the benefit of container-
ization for future SDV systems. The developed microservice
architecture will be contributed open-source to the Autoware
Foundation (https://github.com/autowarefoundation/autoware).

II. RELATED WORK

Several papers discuss challenges and advancements in
embedded systems and automotive software. Sax et al. [11]
emphasize the shorter release cycles, increased variants, and
software updates in modern vehicles. However, they do not
provide any in-depth analysis of particular solutions or tools.
The integration of new functionalities increases the complexity
of vehicle systems, requiring careful considerations of the
architecture and distribution of electronic control units to
effectively manage this complexity [12]. Kugele et al. [13]
discuss elastic service provisioning in intelligent vehicles. The
management of different workloads, resource constraints, and
changing user requirements is highlighted as a need. Hence, the
importance of providing scalable and flexible services that are
able to dynamically allocate resources and change performance
characteristics based on real-time conditions.

Microservices and service-oriented architectures (SOA) have
the potential to improve the flexibility of automotive systems.
Lotz et al. [14] investigate the feasibility and impact of
implementing a microservice architecture for driver assistance
systems and demonstrate the reduction of complexity and
improvement of software systems. Tamanaka et al. [15] present
a conceptual framework for a fault-tolerant architecture and
highlight the use of microservices and containerization as
critical components. In [16], a literature review explores
design principles and architectural refinement strategies for
microservices. Through a systematic mapping study, Kukulicic
et al. [17] analyzes the adoption of SOA in automotive software.
Functional usability stands out as the most relevant benefit,
while issues such as e.g., security, safety, and reliability are
identified as challenges. Previous research provides overviews,
on a purely theoretical basis, of the challenges and benefits of
moving to a microservice architecture (see [18]).

Regarding the performance impact of virtualization and
containerization technologies on diverse systems, in [19]
the authors introduce a benchmarking suite to assess the
resource costs of various virtualization technologies. They
compare the performance of hardware native hypervisors,
hosted hypervisors, and containers using reference benchmarks.
Morabito et al. [20] focus on evaluating the performance of
containerization on Internet-of-Things edge environments. The
strengths and weaknesses of various low-power devices when
dealing with container-virtualized instances are highlighted.
Notably, both demonstrate that virtualized or containerized
systems show acceptable performance compared to bare-metal
systems. Felter et al. [21] compare the performance of virtual
machines (VMs) and Linux containers within cloud computing
environments. The study demonstrates that containers out-
perform or match the performance of VMs in most cases,

emphasizing the potential benefits of using containers in
cloud architectures. Similarly, in [22], the authors conduct
research on container-based virtualization in high-performance
computing, highlighting the low overhead and potential for near-
native performance. While all these studies provide valuable
insights, they lack experiments on real-world use cases. In the
automotive area, Rajan et al. [23] explore the technique of
bringing virtualization into automotive multicore controllers.
The authors evaluate the performance of a virtualized system
in terms of core loading, interrupt timing, and task timing
parameters. Long et al. [24] develop a general benchmark
that yields results consistent with the conclusions mentioned
previously. Furthermore, they specifically focus on the startup
time of microservice-based Autoware automotive applications
demonstrating that virtualization and containerization are
suitable and viable options. The adoption of these virtualization
technologies might be beneficial in the automotive industry.
For the development of robot software, ROS 2 is the most
widespread framework. [25] presents an exemplary architecture
tailored to autonomous driving and the possibilities of using it
for high-speed autonomous racing are presented in [26]. The
proposed racing architecture is based on microservices where
each functional module, e.g., perception, planning, and control,
is deployed as a container. Autoware [5] represents the most
comprehensive open-source initiative dedicated to ROS 2 for
autonomous driving software. In the literature, there are already
several different frameworks [27], [28], [29], [30] that allow
to measure ROS 2 applications. These are normally based
on ros2_tracing [31], which instruments trace points into
the middleware accordingly. This allows determining callback
times as well as end-to-end latencies. In addition, there are
benchmark tools that are mostly limited to simple examples
where statements can be made about the DDS latency [32], [33]
or the entire system performance [34]. For a single-threaded
executor system, timing analysis is performed in [35]. Reke
et al. [25] conduct an end-to-end latency and corresponding
jitter analysis for an entire application. In [36] an analysis for
Autoware is realized, with a focus on embedded hardware. The
authors in [37] analyze the impact of the different system
abstraction layers on the end-to-end latency of Autoware.
They also tried different Linux scheduling configurations to
improve the timing behavior on bare-metal systems. In [38],
[39] the focus is only on the influence of the DDS layer.
For the ROS 2 autonomous racing software presented in [26],
a latency evaluation is carried out in [4]. The focus is on
the application layer and vehicle stability impact of timing.
However, the influence of the microservice architecture is not
evaluated. Based on the current state of the art, it is impossible
to find an assessment of the impact of containerization and
a corresponding microservice architecture on the end-to-end
latency of ROS 2 applications.

III. MICROSERVICE ARCHITECTURE FOR AN AUTONOMOUS
DRIVING SOFTWARE

Following the paradigms of software-definedness, the mi-
croservice architecture for autonomous driving software is
designed to enhance the modularity of the software, enabling

https://github.com/autowarefoundation/autoware


Autoware Baseimage

• FROM ubuntu:22.04

• Dependency handling

• Ansible – roles (e.g., ROS 2, CUDA)

• Pull latest Autoware

• Rosdep Installations

x86 | aarch64 

• FROM base:humble_cuda_{arch}

• Pull latest module code

• Build module packages

• Define entrypoint

Perception

FROM base:humble_{arch}

• Pull latest module code

• Build module packages

• Define entrypoint

Planning

Docker 
Images

Unit Test

Module Test

Build Image

CI Server Container Registry Host SystemGitLab

Commit

Trigger Push Pull

Modul Specific

Dev Container

Fig. 2: Schematic of the build and deployment process of the
microservice architecture: After committing code changes to
the Autoware repository on the CI server, the test procedure
and docker image build steps are triggered. The built images
are stored in the container registry and can be pulled from
the cloud onto the host system. The corresponding module
images are based on a base image that contains the necessary
basic installations. This module image, in turn, also serves as
a container for the development of features.

efficient development and corresponding software deployment.
The core of our architecture is a base image that forms the
basic building block for the individual module containers.
Specialized containers implementing dedicated functionalities
are derived from the base image. The base image can also be
used for development as it has the requirements for building the
complete code. The base image includes essential installations
such as ROS 2 and optional libraries like cuda, cuDNN,
and TensorRT, which are not necessarily required by every
specialized module. The advantages of using a single base
image are manifolds. The configuration and installation of
all packages can be centralized using a multi-step process
that relies on, e.g., Ansible roles, rosdep installation, and
manual configuration. This also simplifies the management
of cross-package dependencies, facilitates freezing packages
to specific versions, and avoids introducing incompatibilities
between (updated) packages and our code.1 Once configured,
the base image rarely needs to be rebuilt. Fig. 2 depicts the build
and deployment process of the microservice architecture. We
divided the Autoware software into eight dedicated containers
based on the functional modules in the software. The containers
are sensing, perception, localization, map, planning, control,
vehicle, and system. Each container consists of multiple ROS 2
nodes, as shown in Table I. In our architecture, the entire
ROS 2 launch structure of Autoware was restructured with
the separation of individual modules. The centralized launch
package, which listed all packages as dependencies, was split
into individual launch packages for each module (with only

1Managing dependencies in ROS 2 is particularly complex and manual
optimization, as well as package updates, quickly become a daunting task.

TABLE I: Description of the individual services and number
of executed ROS 2 nodes for the Autoware microservices.

Service Nodes Description
Sensing 48 Collecting and pre-processing of raw sensor data
Perception 49 Object detection, tracking, and prediction of traffic

participants
Localization 33 Estimation of vehicle pose, velocity, and acceleration
Map 6 Broadcast semantic and geometric information about the

environment
Planning 25 Generation of the trajectory of the ego vehicle
Control 8 Generate control commands to the vehicle
Vehicle 1 Passes control signals to the vehicle and receives vehicle

information
System 21 Error monitoring

the needed dependencies). As a result, each module can be
built and launched individually. The former central launch
package included all launch parameters. In contrast, in our
architecture, a separate package was created to contain these
launch parameters, which are accessible by the module launch
files. Additionally, we integrated the launch parameters to
be located outside the containers and mounted during the
startup of the respective containers. This approach provides
the advantage that changes affecting several module containers,
such as the vehicle model, only need to be modified in one
location, ensuring consistent parameters for all modules. We
developed a continuous integration (CI) pipeline for building
custom module containers that ensures compatibility with both
x86 and aarch64 architectures by using cloud-native hardware
resources. The CI pipeline consists of several stages that
enable both the creation of the entire software and the targeted
creation of individual modules. This approach offers efficiency
advantages, eliminating the need to rebuild all containers for
each code change. Additionally, it facilitates selective updates
and maintenance via a CI pipeline-based multi-stage testing
process. Initially, unit tests are conducted, followed by modular
tests in which several functions and their interactions are
assessed. Due to the modular container structure, a test does not
have to be executed repeatedly, but only within the respective
container module. We utilize the CI cloud infrastructure to
store our built containers in the container registry. The built
containers can be seamlessly deployed on both simulation
infrastructure and actual vehicles, offering a flexible deployment
strategy. Compared to a monolithic architecture, our microser-
vice architecture improves the development and deployment
of the software. During development, the software developer
only needs to handle the dependencies related to the respective
functionality. The building of the software is automatized in
the cloud, and the deployment is simplified. This development
and deployment workflow of the microservice architecture is
successfully used in real vehicle projects [7], [26].

IV. EXPERIMENTS

A typical ROS 2 application can be abstracted in several
layers ranging from high-level applications to the foundational
hardware. We define the layers as depicted in Fig. 3. With
the use of containerization, the container runtime adds an
additional layer. Positioned above the operating system, this
layer facilitates the creation, execution, and management of
containers. These executable software packages encapsulate
an application and its dependencies. Our study focuses on



Fig. 3: The abstraction layers of a ROS 2 application executed
in bare-metal (left) and in multiple containers (right). Using
containerization, an additional layer is introduced. Each con-
tainer consists of independent individual layers, but shares a
common Linux kernel.

TABLE II: Specifications of the computing platforms.
InoNet ADLINK

Mayflower-B17 AVA COM-HPC
CPU AMD EPYC 7313P

(x86)
Ampere Altra Q32-17

(aarch64)
Clock Frequency 16 x 3.0GHz

(max. 3.7GHz)
32 x 1.5GHz

(max. 1.7GHz)
RAM 4 x 32GB 32GB

GPU NVIDIA RTX A6000 48GB

Disk Samsung 980 PRO NVMe M.2 SSD - 2TB

Kernel 6.2.0-34-generic
OS Ubuntu 22.04.3 LTS Jammy Jellyfish

understanding the influence of containerization on ROS 2
applications. Specifically, our experiments were systematically
designed with an increasing complexity:

• DDS Communication: This experiment examines the pure
communication performance of DDS in isolation.

• ROS 2: A publish/subscribe example is introduced to
observe the performance implications of DDS and ROS 2.

• Real-World Autonomous Driving Application: Incorpo-
rates the impact of containerization on the developed
microservice architecture.

For each of the experiments, the three increasing-isolation
deployments (Fig. 1) have been evaluated. The first scenario
(bare-metal) serves as reference point and tests run natively on
the system without containerization. In the second scenario we
ran the test within a single container. This aims to measure the
overheads introduced by containerizations in the first place. The
third scenario, multi-container, placed the respective benchmark
algorithms in separate containers.

In this section, we first introduce our hardware setup and
the specific configurations of our containerization architecture.
Afterward, we describe the DDS, ROS 2, and Autoware
benchmark setups with their individual metrics.

A. Hardware Setup and Software Configurations

All experiments were conducted on two distinct computing
platforms (one x86 and one aarch64 (Armv8)), as depicted in
Table II. The two platforms are representative of autonomous
driving platforms for SDVs [40] and use the same GPU,
OS, and Kernel version. On the x86 computing system, we

disabled hyperthreading to minimize potential performance
fluctuations. The corresponding experiments are performed
with ROS 2 Humble Hawksbill with the underlying middleware
Eclipse CycloneDDS [41]. We chose Docker (version 24.0.5)
as containerization technology due to its advanced GPU
integration capabilities, which provide an obvious advantage
over alternative solutions like Podman. To orchestrate the mi-
croservice architecture, we utilized k3s (version v1.27.3+k3s1)
to deploy and manage the containers. We employed the
nvidia-docker2 package to enable GPU support for Docker
and the nvidia-device-plugin for k3s. The container pods
are configured in such a way that they communicate over the
local host network. No CPU requests or limits are set in the
configuration. The standard Linux Completely Fair Scheduler
(CFS) is used for every experiment. Despite not being a “true”
real-time setup, we are interested in replicating a soft real-time
environment that reflects the typical setups for software-defined
architectures adopted by the practitioners [1], [42].

B. Benchmarks

1) DDS Communication: To test DDS communication, we
use the ddsperf benchmark from the Eclipse CycloneDDS.
This benchmark focuses purely on DDS communication, as
it skips the ROS 2 abstraction layer. This approach enables
us to investigate the influence of containers on pure DDS
communication. The experiment uses a straightforward “ping
pong” communication pattern to analyze containerization’s
impact on DDS performance. This pattern consists of con-
tinuously sending a defined message size back and forth
between two nodes. In the multi-container scenario, each
node is placed in an individual container. CycloneDDS can be
configured in two modes: reliable and best-effort. In the best-
effort setting, a publisher sends messages without any assurance
that the recipient will receive them correctly. Conversely, in
reliable mode, the publisher continues sending messages until
it receives an acknowledgment from the subscriber indicating
successful reception. Given that best-effort is the default setting
for most nodes in the Autoware software, we opt for this
mode for our study. Another crucial aspect was the variation
in message size. Starting at 1 kB, the size was gradually
increased by doubling message sizes to analyze the impact on
performance across a spectrum of message sizes up to 8MB.
This variation allowed us to assess the scalability and efficiency
of DDS communication under different load conditions. Finally,
each test was run three times to ensure reproducibility and
consistency of results. Each run with a different message size
lasted 30 minutes. This time period was chosen, in particular,
to ensure that a sufficient number of packets could still be
exchanged during the tests with the largest message sizes.

2) ROS 2: We used the NVIDIA-ISAAC-ROS
ros2_benchmark from [34] to evaluate the impact of
containerization on simple ROS 2 applications. This
benchmark framework is sophisticated and allows testing
several example ROS 2 graphs. From the ros2_benchmark,
we chose the AprilTag [43] node as a reference for our
evaluation. The benchmark includes a playback node that
sends camera data, which is in turn processed by the AprilTag



detection node. The benchmark also comprises a data-loader
node that loads the rosbag r2b storage data into a buffer
and sends it to the playback node. A monitoring node for
benchmark-internal evaluations (e.g., CPU monitoring) is
also included. In the bare-metal configuration, we run the
entire framework without changes to the systems. In the
single-container configuration, we put the playback and
detector nodes inside the single container, whereas in the
multi-container configuration, we separate both nodes into
individual containers. We let the benchmark complete a total
of 100 runs per each deployment type. Each individual run
consists of 5 internal iterations. Eventually, the benchmark
outputs a statistical result for the five iterations, which we
merge accordingly for the 100 runs. In our experiments,
the benchmark tests four different setups in terms of the
publishing frequency of the playback node: 10 fps (100ms),
30 fps (33.3ms), 60 fps (16.7ms), and an additional setup
where the system is configured to achieve the maximum
throughput. With increased framerate, the workload for the
system also grows. Therefore different stress levels of the
system can be evaluated.

C. Real-World Autonomous Driving Application

We evaluated the performance impact of containerization on
Autoware in the microservice architecture presented in Sec-
tion III. In the bare-metal setup, the Autoware software is
created natively on the system and launched accordingly. In
the container environments, Autoware is installed inside of
one container. The launch command of the bare-metal variant
is defined as an entry point in the container and can then
be started with k3s. For the microservice architecture, as
previously described, each module has its individual launch
command defined in the entry point of the container. For
all three deployment variants, it is guaranteed that the same
software version is compared. We leverage the orchestration
framework proposed in [37] to simulate in a closed-loop the
deployed Autoware variants using the AWSIM environment.
The Autoware software is executed standalone on the described
compute platforms, and the simulation is executed on a different
compute unit. The vehicle is driving on a defined test route
in Nishi-Shinjuku in Tokyo, Japan. Traffic participants were
removed from the simulation because they cannot be simulated
in a reproducible manner. Each experiment is repeated until 100
valid runs can be evaluated. Each test drive takes approximately
two minutes to reach the goal pose.

D. Metrics

It is important to develop metrics at both application and
system levels to analyze the impact of containerization. Such
metrics provide valuable insights into resource utilization, help-
ing to identify the latency impact induced by containerization.
However, benchmarks are often published with their metrics,
making it difficult to evaluate all experiments consistently. In
the following, we will go into more detail about the metric
used for each experiment.

1) DDS Communication: The benchmark provides the
throughput of packets sent during the test period. In addition,
the round trip latency is displayed, which is the time it takes for
a message to be sent from the source node to the destination
node and back again. The benchmark does not provide the
CPU load during the execution. After the tests, we calculate
the average round trip time and the average throughput.

2) ROS 2: The framework outputs different metrics for
each test node. We evaluate the mean end-to-end latency
from sending the raw data until the test node generates an
output. This metric is calculated internally in the benchmark
via tracing points. Also the mean jitter of the corresponding
node is measured. Additionally, the framework provides insight
into CPU utilization. We evaluate the average CPU utilization
over the test runs.

3) Real-World Autonomous Driving Application: The com-
plex ROS 2 Autoware setup is evaluated using the data-age
(end-to-end latency) metric, shown [44] to be equivalent to
the reaction time. It is the average of path durations with the
same sensor input. For this, the framework of [29] is used,
which can determine the end-to-end latency for Autoware
accordingly. The computation is based on ros2_tracing,
which places corresponding trace points in the rclcpp client
library of the ROS 2 middleware. To enable tracing while using
the containerized architecture of Autoware, it was necessary
to mount specific LTTng related file information from the
host system into each of the containers. Inside the containers
ros2_tracing must be enabled. For the bare-metal and
containerized measurements, the tracing session was executed
on the host system. The framework computes the total end-to-
end latency as well as its individual components:

• The idle latency or intra-node communication latency
defines the time between a subscription callback and a
timer callback of a ROS 2 node.

• The communication latency is the time between publishing
and receiving a ROS 2 message via a subscription callback.
It corresponds approximately to the time needed for the
DDS communication.

• The compute latency describes the time it takes to
process the input from a subscription and publish the
corresponding output data to the subsequent node.

Since Autoware consists of a large number of individual

TABLE III: ROS 2 callback signatures for the evaluated
computation chain.

Computation Chain
(0) Filter::(PointCloud2,PointIndices)
(1) NDTScanMatcher::(PointCloud2)
(2) EKFLocalizer::(PoseWithCovarianceStamped)
(3) EKFLocalizer::()
(4) StopFilter::(Odometry)
(5) BehaviorPathPlannerNode::(Odometry)
(6) BehaviorPathPlannerNode::()
(7) BehaviorVelocityPlannerNode::(PathWithLaneId)
(8) ObstacleAvoidancePlanner::(Path)
(9) ObstacleVelocityLimiterNode::(Trajectory)
(10) ObstacleStopPlannerNode::(Trajectory)
(11) ScenarioSelectorNode::(Trajectory)
(12) MotionVelocitySmootherNode::(Trajectory)
(13) PlanningValidator::(Trajectory)
(14) Controller::(Trajectory)
(15) Controller::()
(16) VehicleCmdGate::(AckermannControlCommand)



computational chains, we selected a single chain for evaluating
latency. This chain, detailed in Table III, was chosen to traverse
as many containers as possible for a more accurate assessment
of their influence. Furthermore, it represents the critical path
with the highest latency in the application. The quality of
service setting is configured to “keep last,” operating in best-
effort mode with a queue length of 1. To measure the CPU
and memory utilization of Autoware, we recorded the process
status using Linux ps. We recorded the information for all
processes every 200ms. As we are interested in the influence
of the containerized ROS 2 application, the processes are
correspondingly filtered after the session to ROS 2, Docker,
Kubernetes, and Autoware processes.

V. RESULTS

A. DDS Communication

The performance benchmark results offer valuable insights
into the effects of containerization. As described in Sec-
tion IV-B1, we used CycloneDDS and measured the round trip
latency of specific message sizes and the number of successfully
delivered packets. Table IV presents the measured results for
both of the compute platforms from message sizes ranging from
1 kB to 8MB. On both platforms, container-based deployment
achieves lower latencies than bare-metal deployment in almost
all scenarios. This effect is more evident on aarch64 and
particularly pronounced for small message sizes. On aarch64,
bare-metal configurations never perform better than containers,
while only 2MB bare-metal messages achieve a lower latency
on x86. The latency improvement is more evident on aarch64

than x86. For example, for 1 kB, on aarch64 containers
achieve around 15% lower latency (around 8-10% on x86),
while for 64 kB, the improvement is even higher (18% vs.
8%). Multi-containers can consistently perform better than
single-containers. This is the case for large message sizes on
aarch64, where multi-container setups always perform better
than single-container starting from 512 kB message sizes. This
trend is not confirmed on x86, where single-container setups
perform better for large message sizes. In a real application
such as the Autoware software stack shown later, the observed
message sizes are in the range of 1 kB to 128 kB. This is a
range where containerized versions on both systems showed
smaller latencies.

B. ROS 2

We further investigated the combined performance implica-
tions of DDS and ROS 2 using ros2_benchmark. We present
the experimental setup in Section IV-B2. Image data with
a size of 0.92MB is transferred for the data set used. In
addition to the pure DDS time, the end-to-end latency now
also includes the computation time of the detection algorithm.
Therefore, in percentage terms, the DDS time has a much
smaller share. Table V shows the measured results of the
conducted benchmark. Contrary to ddsperf, latency values in
ros2_benchmark are very close across all setups. Although
containerization can achieve slightly lower latency than bare-
metal for low fps (10 and 30), bare-metal performs slightly
better at 60 fps. Differences in latency are minimal (between

0.0 0.1 0.2 0.3 0.4 0.5
Latency [s]

0

5000

10000

15000

20000

25000

30000

35000

Fr
eq

ue
nc

y

End-to-End
Mean

0.0 0.1 0.2 0.3 0.4 0.5
Latency [s]

0

2000

4000

6000

8000

10000

12000

14000

Fr
eq

ue
nc

y

End-to-End
Mean

(a) Bare-metal setup

0.0 0.1 0.2 0.3 0.4 0.5
Latency [s]

0

2500

5000

7500

10000

12500

15000

Fr
eq

ue
nc

y

End-to-End
Mean

0.0 0.1 0.2 0.3 0.4 0.5
Latency [s]

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

End-to-End
Mean

(b) Single-container setup

0.0 0.1 0.2 0.3 0.4 0.5
Latency [s]

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

End-to-End
Mean

0.0 0.1 0.2 0.3 0.4 0.5
Latency [s]

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

End-to-End
Mean

(c) Multi-container setup

Fig. 4: End-to-end latency histograms (a) using the bare-metal
setup, (b) using the single-container setup, and (c) using the
multi-container setup (blue=x86, red=aarch64).

0.4% and 4.6%). Looking at the jitter shows a reduction due
to containerization in almost all cases. For the 10 fps setup,
the occurring jitter is reduced by 10.3% for single-container
and 8.1% for multi-container. At 60 fps by 6.2% and 3.10%.
At maximum throughput, only minor differences occurred. An
outlier occurs in the multi-container deployment only in the
30 fps setup. The aarch64 platform also shows this behavior
in all setups except for the maximum throughput. At 10 fps,
the jitter is reduced by 30.1% and 31.4%. Again, for the other
setups, we observe the same behavior. Only the multi-container
deployment in the last setup exhibits slightly increased jitter.
Overall, we conclude that containerization may lead to a
reduction in latency. Additionally, we observe slight differences
in CPU utilization. Specifically, for x86, the single-container
setup demonstrates the lowest utilization compared to other
deployments. Conversely, for aarch64 at lower fps, the bare
metal benchmark outperforms the containerized benchmark,
while for higher fps, the single-container setup performs the
best.

C. Real-World Autonomous Driving Application

At last, we evaluate the developed multi-container microser-
vice architecture (see Section III) for an autonomous vehicle



TABLE IV: Mean latency and package count for different message sizes for the ddsperf benchmark.
(BM=bare-metal, SC=single-container, MC=multi-container). Min values across configurations are marked in bold.

Message Size
x86 aarch64

Mean Latency [µs] Mean Package Count Mean Latency [µs] Mean Package Count
BM SC MC BM SC MC BM SC MC BM SC MC

1kB 9.40 8.40 8.29 95183875 106363549 107825676 35.08 29.22 29.76 25466930 30566990 30019061
4kB 10.67 9.47 9.84 83878392 94467569 90891488 37.47 33.83 33.40 23865466 26422565 26762629
8kB 11.56 10.07 10.41 77502760 88876974 85965143 43.24 36.87 38.12 20685487 24257601 23468802
16kB 18.31 16.56 16.07 48958255 54174267 55694824 50.95 40.44 41.66 17573440 22122799 21467480
32kB 26.69 23.58 23.90 33623951 38049383 37530124 78.29 70.62 69.39 11445854 12690563 12915312
64kB 40.66 37.52 37.14 22096636 23936672 24175705 126.98 103.47 103.42 7065036 8671388 8672852
128kB 68.57 68.64 66.15 13104554 13088043 13578698 219.03 191.06 195.60 4099368 4698385 4589767
256kB 127.44 125.71 127.35 7051885 7148614 7056868 421.19 370.59 374.44 2132447 2423861 2399043
512kB 270.62 269.02 269.67 3380179 3386639 3381805 1526.63 1359.85 993.96 649670 716643 944632
1MB 693.24 639.32 707.37 1323072 1427427 1290395 2415.79 2033.56 1868.45 401169 461185 499301
2MB 1201.41 1302.54 1709.00 761672 704386 532031 5310.44 4662.29 3980.55 181039 205960 242480
4MB 2665.02 2655.18 3071.55 340980 342625 294714 9279.03 12661.69 6581.91 102937 92376 139366
8MB 5338.55 5233.07 5532.21 169790 172760 165345 17157.53 24752.60 13326.46 54806 44914 68176

TABLE V: Mean latency, jitter, and CPU utilization for different setups of the ros2_benchmark.

Architecture Setup Mean Latency [ms] Mean Jitter [ms] Mean CPU Util. [%]
BM SC MC BM SC MC BM SC MC

x86
10 fps 6.13 5.85 5.90 2.33 2.09 2.14 0.96 0.94 0.98
30 fps 5.99 5.87 5.85 1.90 1.83 2.07 1.60 1.57 1.64
60 fps 5.76 5.80 5.81 1.62 1.52 1.57 2.78 2.72 2.81

Max. TP 7.20 7.08 7.26 1.03 1.02 1.02 3.59 3.57 3.63

aarch64
10 fps 17.82 17.74 17.83 1.43 1.00 0.98 1.11 1.13 1.15
30 fps 17.65 17.58 17.71 1.42 1.40 1.37 2.19 2.24 2.29
60 fps 22.76 24.73 23.98 1.23 1.19 1.12 2.19 2.15 2.31

Max. TP 18.03 18.27 18.09 1.61 1.59 1.62 3.57 3.55 3.60

TABLE VI: Consolidated statistics for different metrics for Autoware.
Architecture KPI Type Mean Std Skew Kurtosis Min Q25 Q50 Q75 P99 Max

x86

E2E
BM 194.67 84.68 3.01 19.94 31.28 139.84 199.43 223.85 515.87 1437.94
SC 184.51 47.17 0.18 0.35 35.37 152.59 183.86 213.95 300.79 553.79
MC 178.73 64.42 1.19 3.59 25.77 136.00 171.30 210.20 383.03 903.45

Idle
BM 133.81 73.12 3.04 21.88 5.24 87.09 129.82 165.77 406.713 1274.48
SC 125.92 44.89 0.26 0.44 7.33 95.85 125.71 156.61 237.34 504.89
MC 127.78 62.05 1.38 4.25 3.75 85.78 118.42 156.91 331.79 841.68

Communication
BM 8.10 10.97 4.83 43.31 1.30 2.88 4.09 8.26 56.05 402.42
SC 3.14 1.79 28.52 1372.51 1.16 2.53 2.91 3.42 6.59 136.17
MC 3.12 3.20 32.91 1559.51 1.27 2.45 2.90 3.32 6.79 298.26

Computation
BM 52.77 24.39 3.60 56.22 8.56 37.68 52.19 61.28 124.27 623.96
SC 55.46 17.30 0.02 0.91 13.41 42.75 59.74 65.80 104.70 175.43
MC 47.83 20.71 0.11 0.36 9.05 32.34 53.72 62.10 105.60 244.08

aarch64

E2E
BM 258.65 71.42 3.71 28.26 120.21 210.70 242.14 301.10 537.49 1389.36
SC 256.65 46.41 0.60 0.85 144.74 221.71 251.80 284.49 389.62 606.88
MC 244.11 66.08 1.39 11.44 55.02 202.66 243.77 282.81 405.38 1168.96

Idle
BM 112.76 54.70 2.09 14.98 6.80 74.95 101.85 151.29 269.51 981.29
SC 97.75 44.85 0.68 0.95 7.94 64.44 94.20 126.06 223.01 448.31
MC 117.89 56.62 3.54 35.67 7.01 83.09 112.66 146.26 258.24 1084.05

Communication
BM 10.67 14.82 10.56 162.57 4.69 6.49 7.18 9.35 69.42 468.11
SC 8.32 4.27 13.95 279.49 5.61 6.86 7.50 8.64 18.19 146.23
MC 7.59 3.19 13.08 312.38 3.47 6.35 7.20 8.08 15.20 148.73

Computation
BM 135.23 27.84 6.85 73.21 90.90 123.59 133.65 140.63 245.06 704.96
SC 150.58 14.54 1.11 7.64 107.28 141.23 151.91 158.52 199.52 324.74
MC 118.63 36.90 -0.61 -0.41 24.66 87.86 131.09 147.71 182.57 322.10

bare-metal single-container multi-container

0

50

100

150

C
PU

U
til

iz
at

io
n

in
% x86

aarch64

Fig. 5: CPU utilization of the systems for the different
deployment variants.

and compare it with the bare-metal execution and the execution
within a single container. We further split the end-to-end latency
into its components (Idle, DDS Communication, Computation)

bare-metal single-container multi-container

0

5

10

15

M
em

or
y

U
sa

ge
in

G
B x86

aarch64

Fig. 6: Memory utilization of the systems for the different
deployment variants.

to gain a better understanding of each contribution. Fig. 4
shows histograms of the different deployment variants on the
respective compute platforms. Table VI presents the detailed



measurement values for the entire experiment. As explained
in Section IV-D the latencies are shown for one computation
chain from the sensor to the control output.

E2E Latency. The histograms of bare-metal deployments
(Fig. 4(a)) show a bimodal distribution with (x86) high
kurtosis value of 19.94 and a long tail visible in the Q75
and P99 values (Table VI). A similar behavior is evident on
the aarch64 system. Instead, for single-containers, we see a
reduced standard deviation and a significantly lower kurtosis
of only 0.35. This is reflected in the histogram that show a
compact distribution.

The bare-metal implementation of Autoware on the x86

platform shows an end-to-end latency of 194.67ms. Instead,
for the developed microservice architecture, the mean latency
is reduced by 8.1% to 178.73ms for x86 and by 5.6% to
244.11ms for aarch64.

A relatively large maximum value with 1437.94ms is
measured for bare-metal. In the single-container scenario,
this maximum value drops to only 553.79ms. We also see a
reduction in the various quantiles. From 515.87ms in the 99th
percentile to 300.79ms, which is an improvement of 41.7%.

Idle Latency. Looking at the idle latency, which describes the
time data waits for processing via a timer callback, we observe
the following for x86. The native deployment shows an idle
latency of 133.81ms. Experiments on aarch64 show lower
mean (112.76ms) and maximum values. Executing Autoware
in a single-container environment eliminates the two peaks,
resulting in a more even distribution for both x86 and aarch64.
The mean latency value decreases to 125.92ms for x86 and
97.75ms for aarch64, indicating improvements of 5.9% and
13.3%, respectively. This improvement extends to quantile
values as well. The 99th percentile sees an improvement
of 41.6% to 237.34ms for x86 and 17.3% to 223.01ms
for aarch64. In the multi-container deployment, the mean
idle latency is higher than that of single containers, but still
lower than the bare-metal setup for x86. Conversely, a higher
measurement value compared to bare-metal is observed for
aarch64 (4.5%). For x86, quantiles 25 and 50 are lower
compared to single containers, but higher for aarch64. Both
systems exhibit increased values for P99 and the maximum.

Communication Latency. The communication latency repre-
sents the smallest portion of the entire end-to-end latency. On
the x86 in the native deployment, this latency has a mean of
8.10ms, while on the aarch64, it has a mean of 10.666ms.
However, both systems exhibit maximum values of 402.42ms
and 468.110ms respectively, resulting in distributions with
long right tails. Notably, the distribution of the single-container
variant shows a reduced tail: the mean DDS latency improves by
61.2% to 3.14ms for x86, with a smaller improvement (22.0%)
observed for aarch64. Both systems also see reductions in
their maximum values. In the multi-container variant, DDS
values for both systems are similar to those of the single-
container setup, with reduced mean and quantile values within
a negligible range compared to single-container. Only the
maximum value increases slightly to 298.26ms for x86, still
smaller than in the bare-metal deployment. On the aarch64,

the maximum value is only slightly higher than that of the
single-container setup.

Computation Latency. The computation latency is reduced in
the multi-container deployment, resulting in improved mean
values (47.83ms for x86 and 118.63ms for aarch64). These
improvements lead to lower values than those observed in both
the bare-metal and single-container scenarios. However, we
note increased values for P99 and the maximum on the x86

variant. However, the mean values diverge significantly, and
the aarch64 system experiences higher values compared to
before. The results deviate from a normal distribution, as no
clear peak is visible, but rather multiple peaks in both cases.

CPU and Memory Utilization. Fig. 5 shows the distributions
of CPU usage measured over all runs, i.e.,, from the execution
of the ROS 2 launch file until the vehicle reaches the target
position. We observe the same behavior noted by [24] regarding
the startup of the software. With bare-metal and single-
container, the mean ramp-up phase of the software lasted
13.60 s and 14.4 s, on the x86. On the aarch64 it is 21.3 s
and 23.1 s. Multi-container has a much lower ramp-up phase,
where all nodes of the software startup the fastest, 3.8 s for
x86 and 4.6 s for aarch64 respectively. This ramp-up phase
is clearly visible in both of the plots in the lower part of
the graph. As visible in Fig. 5 and Fig. 6, containerized
applications, regardless of whether single or multi-container,
have a lower CPU and memory utilization. Further analyzing
CPU utilization, a significant scatter is observed for bare-
metal, ranging from approximately 50% to 90% after node
initialization. The variance is notably lower for the single-
container setup, with a slight difference in utilization, where
aarch64 exhibits slightly higher values compared to x86.
Regarding memory consumption, bare-metal deployments
on x86 cluster at around 10GB RAM, whereas aarch64

displays higher memory consumption with a significantly higher
variance. Once again, transitioning the application to a container
environment, whether single- or multi-container, leads to a
reduction in memory consumption by almost a factor of two
for x86. Similarly, on aarch64, a drastic decrease in memory
consumption is observed. However, both container variants
still exhibit higher memory consumption compared to the x86

platform, as seen with bare-metal deployment.

VI. DISCUSSION

The results of our research uncover unexpected insights into
the performance of containerized applications, particularly with
respect to end-to-end latency and system utilization. Our results
suggest that applications deployed in a container environment
have a better latency compared to applications running directly
on bare-metal. In the real-world application, end-to-end latency
improvements of up to 5.2% were achieved. The developed
microservice architecture showed an improvement of 5-8% in
the mean. For the maximum values, it was apparent that the
single-container had significantly reduced max values The DDS
Communication benchmark showed that for smaller message
sizes, containerization produced better results. This margin was
considerably lower (almost absent) in the ros2_benchmark.



However, in this benchmark, containerization-related jitter was
lower than bare-metal.

To better understand the root causes of such behaviors,
we have performed several attempts to optimize the bare-
metal Linux system to achieve better results than containers.
However, the complexity of the applications considered and
their internal interaction is so high that it was not possible
to have all parameters under control. We tried to improve
the latency with different real-time scheduling algorithms and
patches. Nevertheless, the Autoware software starved when we
utilized the entire cores for the software. Reserving resources
for the Linux processes led to a higher latency compared to
the presented results.

At their core, containers leverage kernel parameters and
settings to isolate processes using namespaces and cgroups.
Achieving better performance on bare metal typically involves
tuning kernel parameters and settings. Isolation is likely a
primary factor contributing to the improved performance
of containers in our complex setup. By isolating processes,
containers ensure that standard Linux processes do not interfere
with those inside the container, thereby facilitating an optimized
execution environment.

Interestingly, our results showed that deploying applications
in multiple containers enhances the improvements of single
container configurations, particularly for average end-to-end
latencies. This implies that distributing workloads across mul-
tiple containers can optimize the overall system performance,
particularly in terms of latency. However, this approach can
also result in significantly higher maximum execution times.
Such trade-offs must be carefully considered when designing
and optimizing a system, especially in real-time environments
where small maximum execution time is critical.

A critical factor in this discussion is the role of cgroup
scheduling and task assignment to cores within the Linux CFS.
Platforms like Kubernetes and Docker use this mechanism
to effectively schedule container workloads. Cshares, a core
component of this system, are influenced by various parameters
such as predefined CPU limits and the number of processes or
threads within a container. The CFS then allocates resources
to Cshares, determining how resources are distributed among
containers. One of the key advantages of this system is the
relative isolation it offers. In a native system, without the
protective containerization layer, processes could inadvertently
impact each other. For instance, native processes could affect
the performance of the Autoware software within the CFS
scheduler. Containerization effectively segregates processes,
ensuring that each operates within its own domain and remains
unaffected by external entities. The inherent mechanisms of
cgroup scheduling and its relation with the Linux CFS could
play a crucial role in these results.

Another positive effect is that containerization improves
latencies by increasing second-order effects such as the locality
of data by grouping related tasks on a smaller set of cores,
preventing unregulated migrations to distant cores (our systems
have 16 and 32 cores respectively). Unregulated migration
could be the cause of the bimodal distribution observed for end-
to-end latency in Fig. 4(a). However, a number of experiments
and testbeds were implemented to confirm this. This reason

could not be confirmed as the sole cause of the performance
behavior. Our study also showed another interesting trend.
As the complexity of the test cases increased, the number of
processes or threads working within the container also increased
significantly. This suggests that as the complexity increases, the
container environment becomes more densely populated with
processes and threads to handle the increased requirements.

In summary, our exploration of the containerized applications
domain has confirmed the potential benefits of such an
approach, not only in terms of isolation but also in terms
of performance optimization. This is also observed in the paper
[24], where investigations of the start-up time of nodes to
complete launch coincide with our observation of runtime.

VII. CONCLUSION

We presented a microservice architecture tailored to an open-
source software for autonomous driving. Our study provided a
comprehensive overview of the continuous integration and
development process associated with this architecture. We
analyzed multiple metrics for a real-world ROS 2 autonomous
driving application based on Autoware and deployed on
increasingly isolated container environments. In order to
determine the impact of containerization on communication
and simple ROS 2 examples, the analysis was complemented
with dedicated benchmarks for DDS and ROS 2.

Our findings indicate that the effect of containerization on
runtime varies depending on the complexity of the scenario.
In simpler scenarios, the impact of containerization was
relatively minor, but, in more complex scenarios, such as that
of Autoware, the influence—especially on end-to-end latency—
was significant. Moreover, both CPU and memory usage were
reduced, leading to improved software stability. These effects
were observed and validated on two distinct systems: x86

and aarch64 compute platforms. This cross-system analysis
enhances the generalizability of our results.

While our study shows the positive impact of container-
ization, the complex interactions between containers, Linux
CFS, cgroups and Autoware framework require more detailed
investigation to determine the exact contributions of each of
the mechanisms involved. However, to our knowledge, this
work is the first to provide such in-depth insights into complex
real-world autonomous driving setups and highlights the need
for more detailed studies in the future.

Looking ahead, there are several directions for further
research. One is to explore strategies to optimize node
assignment to containers and the impact of static container
allocations to CPUs and setting bounds on CPU shares. Another
interesting topic is hierarchical scheduling, which should be
explored in depth to improve the performance of containerized
ROS 2 applications. Furthermore, it is worth considering the
generalizability of these results beyond ROS 2 applications.

ACKNOWLEDGEMENTS

T. Betz, as the first author, was the initiator of the research idea
and is responsible for the presented concept and implementation.
L. Wen, F. Pan, and A. Knoll contributed to implementation
and design of the benchmarks. G. Kaljavesi contributed to the



implementation of the microservice architecture. A. Zuepke,
A. Bastoni, and M. Caccamo contributed to the evaluation
of the performance impacts and the design of experiments. J.
Betz contributed to the conception of the research project and
revised the paper critically for important intellectual content.
He gave final approval of the version to be published and
agrees to all aspects of the work. As a guarantor, he accepts
responsibility for the overall integrity of the paper. M. Caccamo
was supported by an Alexander von Humboldt Professorship
endowed by the German Federal Ministry of Education and
Research.

REFERENCES

[1] SOAFEE, “SOAFEE: Scalable open architecture for embedded edge,”
2022. [Online]. Available: https://www.soafee.io

[2] M. Spencer, “How the SOAFEE architecture brings a cloud-native
approach to mixed critical automotive systems,” white paper, Sept. 2021.

[3] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driving,” in
Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2018, pp. 751–766.

[4] T. Betz, P. Karle, F. Werner, and J. Betz, “An analysis of software
latency for a high-speed autonomous race car—a case study in the indy
autonomous challenge,” SAE Int. Journal of Connected and Automated
Vehicles, vol. 6, no. 12-06-03-0018, 2023.

[5] The Autoware Foundation, “Autoware - the world’s leading open-
source software project for autonomous driving.” [Online]. Available:
https://github.com/autowarefoundation/autoware

[6] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
operating system 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, p. eabm6074, 2022.

[7] P. Karle, T. Betz, M. Bosk, F. Fent, N. Gehrke, M. Geisslinger,
L. Gressenbuch, P. Hafemann, S. Huber, M. Hübner et al., “Edgar:
An autonomous driving research platform–from feature development to
real-world application,” arXiv preprint arXiv:2309.15492, 2023.

[8] J. Arundel and J. Domingus, Cloud Native DevOps with Kubernetes:
building, deploying, and scaling modern applications in the Cloud.
O’Reilly Media, 2019.

[9] Rancher Labs, “K3s - leightweight kubernetes.” [Online]. Available:
https://github.com/k3s-io/k3s/

[10] D. Merkel, “Docker: lightweight linux containers for consistent develop-
ment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[11] E. Sax, R. Reussner, H. Guissouma, and H. Klare, A survey on the state
and future of automotive software release and configuration management.
KIT Amsterdam, The Netherlands, 2017.

[12] W. Haas and P. Langjahr, “Cross-domain vehicle control units in
modern e/e architectures,” in Int. Stuttgarter Symposium: Automobil-
und Motorentechnik, 2016, pp. 1619–1627.

[13] S. Kugele, D. Hettler, and S. M. Shafaei, “Elastic service provision for
intelligent vehicle functions,” Int. Conf. on Intelligent Transportation
Systems (ITSC), pp. 3183–3190, 2018.

[14] J. Lotz, A. Vogelsang, O. Benderius, and C. Berger, “Microservice
architectures for advanced driver assistance systems: A case-study,” in
IEEE Int. Conf. on Softw. Archit. Companion (ICSA-C), 2019, pp. 45–52.

[15] G. T. B. Tamanaka, R. V. Aroca, and G. A. de Paula Caurin, “Fault-
tolerant architecture and implementation of a distributed control system
using containers,” in LARS/SBR/WRE, 2022, pp. 1–6.

[16] A. Brogi, D. Neri, J. Soldani, and O. Zimmermann, “Design principles,
architectural smells and refactorings for microservices: a multivocal
review,” SICS Softw.-Intensive Cyber-Physical Systems, pp. 3–15, 2019.

[17] N. Kukulicic, D. Samardzic, A. Bucaioni, and S. Mubeen, “Automotive
service-oriented architectures: a systematic mapping study,” in Euromicro
Conf. on Softw. Engin. and Adv. Applications (SEAA), 2022, pp. 459–466.

[18] V. Velepucha and P. Flores, “Monoliths to microservices - Migration
Problems and Challenges: A SMS,” in Int. Conf. on Information Systems
and Softw. Technologies (ICI2ST), 2021, pp. 135–142.

[19] S. Giallorenzo, J. Mauro, M. G. Poulsen, and F. Siroky, “Virtualization
costs: benchmarking containers and virtual machines against bare-metal,”
SN Computer Science, vol. 2, no. 5, p. 404, 2021.

[20] R. Morabito, “Virtualization on internet of things edge devices with
container technologies: A performance evaluation,” IEEE Access, vol. 5,
pp. 8835–8850, 2017.

[21] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
IEEE Int. Symp. on Performance Analysis of Systems and Software
(ISPASS), 2015, pp. 171–172.

[22] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. De Rose, “Performance evaluation of container-based virtualization
for high performance computing environments,” in Euromicro Int. Conf.
on Parallel, Distributed, and Network-Based Processing (PDP), 2013,
pp. 233–240.

[23] A. K. S. Rajan, A. Feucht, L. Gamer, I. Smaili et al., “Hypervisor
for consolidating real-time automotive control units: Its procedure,
implications and hidden pitfalls,” J. Syst. Archit., vol. 82, pp. 37–48,
2018.

[24] L. Wen, M. Rickert, F. Pan, J. Lin, and A. Knoll, “Bare-metal vs.
hypervisors and containers: Performance evaluation of virtualization
technologies for software-defined vehicles,” in IEEE Intelligent Vehicles
Symp. (IEEE IV), Jun 2023.

[25] M. Reke, D. Peter, J. Schulte-Tigges, S. Schiffer, A. Ferrein, T. Walter,
and D. Matheis, “A self-driving car architecture in ros2,” in Int.
SAUPEC/RobMech/PRASA Conf., 2020, pp. 1–6.

[26] J. Betz, T. Betz, F. Fent, M. Geisslinger, A. Heilmeier, L. Hermansdorfer,
T. Herrmann, S. Huch, P. Karle, M. Lienkamp et al., “TUM autonomous
motorsport: An autonomous racing software for the indy autonomous
challenge,” Journal of Field Robotics, vol. 40, no. 4, pp. 783–809, 2023.

[27] Z. Li, A. Hasegawa, and T. Azumi, “Autoware Perf: A tracing and
performance analysis framework for ROS 2 applications,” J. Syst. Archit.,
vol. 123, p. 102341, 2022.

[28] T. Kuboichi, A. Hasegawa, B. Peng, K. Miura, K. Funaoka, S. Kato, and
T. Azumi, “CARET: Chain-Aware ROS 2 Evaluation Tool,” in IEEE Int.
Conf. on Embedded and Ubiquitous Computing (EUC), 2022.

[29] T. Betz, M. Schmeller, A. Korb, and J. Betz, “Latency measurement
for autonomous driving software using data flow extraction,” in IEEE
Intelligent Vehicles Symp. (IEEE IV), 2023.

[30] T. Blaß, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic Latency Management for ROS 2: Benefits, Challenges, and
Open Problems,” in IEEE Real-Time and Embedded Technology and
Applications Symp. (RTAS), 2021, pp. 264–277.

[31] C. Bédard, I. Lütkebohle, and M. Dagenais, “ros2 tracing: Multipurpose
Low-Overhead Framework for Real-Time Tracing of ROS 2,” IEEE
Robot. Autom. Lett., vol. 7, no. 3, pp. 6511–6518, 2022.

[32] Apex.AI, “performance test.” [Online]. Available: https://gitlab.com/
ApexAI/performance test

[33] “iRobot: ROS2 performance,” 2021. [Online]. Available: https:
//github.com/irobot-ros/ros2-performance

[34] “Nvidia-isaac-ros ros2 benchmark,” 2023. [Online]. Available: https:
//github.com/NVIDIA-ISAAC-ROS/ros2 benchmark

[35] H. Teper, M. Günzel, N. Ueter, G. von der Brüggen, and J.-J. Chen,
“End-to-end timing analysis in ros2,” in IEEE Real-Time Systems Symp.
(RTSS), 2022, pp. 53–65.

[36] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,” in
ACM/IEEE Int. Conf. on Cyber-Physical Systems (ICCPS), 2018.

[37] T. Betz, M. Schmeller, H. Teper, and J. Betz, “How Fast is My Software?
Latency Evaluation for a ROS 2 Autonomous Driving Software,” in
IEEE Intelligent Vehicles Symp. (IEEE IV), 2023.

[38] T. Kronauer, J. Pohlmann, M. Matthé, T. Smejkal, and G. Fettweis,
“Latency analysis of ros2 multi-node systems,” in IEEE Int. Conf. on
Multisensor Fusion and Integration for Intell. Syst. (MFI), 2021, pp. 1–7.

[39] T. Wu, B. Wu, S. Wang, L. Liu, S. Liu, Y. Bao, and W. Shi, “Oops! It’s
Too Late. Your Autonomous Driving System Needs a Faster Middleware,”
IEEE Robot. Autom. Lett., vol. 6, no. 4, pp. 7301–7308, 2021.

[40] ADLINK, “SOAFEE for software defined vehicles,” 2022. [Online].
Available: https://www.adlinktech.com/en/soafee

[41] Eclipse Foundation, “Eclipse Cyclone DDS,” 2022. [Online]. Available:
https://cyclonedds.io

[42] Indy Autonomous Challenge, 2021. [Online]. Available: https:
//www.indyautonomouschallenge.com/

[43] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2016,
pp. 4193–4198.

[44] M. Günzel, H. Teper, K.-H. Chen, G. von der Brüggen, and J.-J. Chen,
“On the equivalence of maximum reaction time and maximum data age for
cause-effect chains,” in Euromicro Conf. on Real-Time Systems (ECRTS),
2023.

https://www.soafee.io
https://github.com/autowarefoundation/autoware
https://github.com/k3s-io/k3s/
https://gitlab.com/ApexAI/performance_test
https://gitlab.com/ApexAI/performance_test
https://github.com/irobot-ros/ros2-performance
https://github.com/irobot-ros/ros2-performance
https://github.com/NVIDIA-ISAAC-ROS/ros2_benchmark
https://github.com/NVIDIA-ISAAC-ROS/ros2_benchmark
https://www.adlinktech.com/en/soafee
https://cyclonedds.io
https://www.indyautonomouschallenge.com/
https://www.indyautonomouschallenge.com/

	Introduction
	Related Work
	Microservice Architecture for an Autonomous Driving Software
	Experiments
	Hardware Setup and Software Configurations
	Benchmarks
	DDS Communication
	ROS 2

	Real-World Autonomous Driving Application
	Metrics
	DDS Communication
	ROS 2
	Real-World Autonomous Driving Application


	Results
	DDS Communication
	ROS 2
	Real-World Autonomous Driving Application

	Discussion
	Conclusion
	References

